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Abstract

Mitochondria are essential organelles because of their function in
energy conservation. Here, we show an involvement of mitochon-
dria in phytochrome-dependent light sensing in fungi. Phyto-
chrome photoreceptors are found in plants, bacteria, and fungi
and contain a linear, heme-derived tetrapyrrole as chromophore.
Linearization of heme requires heme oxygenases (HOs) which
reside inside chloroplasts in planta. Despite the poor degree of
conservation of HOs, we identified two candidates in the fungus
Alternaria alternata. Deletion of either one phenocopied phyto-
chrome deletion. The two enzymes had a cooperative effect and
physically interacted with phytochrome, suggesting metabolon
formation. The metabolon was attached to the surface of mito-
chondria with a C-terminal anchor (CTA) sequence in HoxA. The
CTA was necessary and sufficient for mitochondrial targeting. The
affinity of phytochrome apoprotein to HoxA was 57,000-fold higher
than the affinity of the holoprotein, suggesting a “kiss-and-go”
mechanism for chromophore loading and a function of mitochon-
dria as assembly platforms for functional phytochrome. Hence,
two alternative approaches for chromophore biosynthesis and
insertion into phytochrome evolved in plants and fungi.
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Introduction

Phytochrome is an evolutionarily conserved red-light photosensor

in plants, bacteria, and fungi (Lamparter, 2004; Lamparter et al,

2017; Yu & Fischer, 2019; Rockwell & Lagarias, 2020). While its

functions have been well studied in plants, the analyses of bacterial

phytochromes allowed to provide the first structural information of

these proteins (Hughes et al, 1997; Vierstra & Zhang, 2011; Schmidt

et al, 2018). Light controls developmental decisions as well as meta-

bolic properties in fungi and in plants through the phytochrome

(Blumenstein et al, 2005; Ulijasz & Vierstra, 2011). Fungal phyto-

chrome is best studied in Aspergillus nidulans, but it is also present

in many other fungi (Froehlich et al, 2005; Purschwitz et al, 2008;

Schumacher, 2017; Corrochano, 2019; Igbalajobi et al, 2019; Yu &

Fischer, 2019; Schumacher & Gorbushina, 2020). Furthermore,

phytochrome has been recently described also as thermosensor in

A. nidulans and in Arabidopsis thaliana (Jung et al, 2016; Legris

et al, 2016; Yu et al, 2019). However, how the phytochrome acti-

vates downstream signaling cascades is fundamentally different in

plants and in fungi. Thus, whereas in plants activated phytochrome

shuttles into the nucleus to interact with transcription factors

(phytochrome-interacting factors, PIFs) (Pfeiffer et al, 2012; Pham

et al, 2018; Oh et al, 2020), in fungi, phytochrome interacts in the

cytoplasm with the phosphotransfer protein YpdA and promotes

signal transduction through the HOG (high osmolarity glycerol)

signaling pathway (Yu et al, 2016; Yu & Fischer, 2019). In addition,

in fungi, a fraction of phytochrome acts inside the nucleus by inter-

acting with several transcription factors and enzymes required for

chromatin modification (Purschwitz et al, 2008; Hedtke et al, 2015;

Rauscher et al, 2016).

A central component for the photosensory function of all phyto-

chromes is a linear tetrapyrrole, derived from heme. Ring opening

of heme molecules is achieved by heme oxygenases (HOs), which

convert heme in an oxygen-dependent reaction into biliverdin IXa,
iron, and carbon monoxide. In Arabidopsis thaliana, four heme

oxygenases have been described, all of which are nuclear encoded

proteins with a signal peptide sequence at their N-termini for

translocation into chloroplasts (Davis et al, 1999; Muramoto et al,

1999; Davis et al, 2001; Gisk et al, 2010).
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Despite the well-established roles of phytochrome as light and

temperature sensor in A. nidulans, the biosynthesis of the chro-

mophore remains enigmatic. In the genome of A. nidulans, no good

heme oxygenase candidate can be identified using the cyanobacte-

rial, bacterial, or mammalian heme oxygenases as bait. Here, we

studied two putative heme oxygenases from A. alternata. Alternaria

alternata contains a blue-light sensing system but used also phyto-

chrome for light sensing (Igbalajobi et al, 2019; Igbalajobi et al,

2020). Surprisingly, deletion of either of the two putative heme

oxygenase genes caused a “blind” phenotype. They are able to form

homo- and heterodimers and physically interact with phytochrome.

Both enzymes together with phytochrome are attached to the mito-

chondrial outer membrane, suggesting metabolon formation. This

could be a general strategy to separate heme linearization from

heme degradation. Our study revealed a novel function of mitochon-

dria as chromophore-assembly platforms for phytochrome.

Results

Two heme oxygenases are required for phytochrome function in
A. alternata

Here, we describe two HOs from the fungus A. alternata (Fig 1).

Overall sequence similarities to other HOs are low, and comparison

among fungal, plant, and animal HOs revealed two monophyletic

fungal clades represented by HoxA and HoxB from A. alternata (Fig

1A). These two clades are highly different to the clade of plants,

bacteria, or mammals. In other heme oxygenases, a histidine

residue is conserved and involved in heme binding (Ito-Maki et al,

1995). Whereas A. alternata HoxA contains this histidine, it is lack-

ing in HoxB (Fig 1B). Nevertheless, in both proteins a HemeO-like

superfamily domain is predicted (Fig 2A). In addition, a hydropho-

bic stretch of 21 amino acids was identified at the C-terminus of

HoxA. Because this region is required for mitochondrial association,

it was named C-terminal anchor (CTA) (see below).

To functionally characterize hoxA and hoxB in A. alternata, both

genes were deleted using CRISPR/Cas9 (Wenderoth et al, 2017;

Wenderoth et al, 2019) (Appendix Fig S1). In either deletion strain,

the induction of the red-light regulated gene, ccgA, was drastically

reduced, as much as in the phytochrome-deletion strain (Fig 2B).

To further link the deletion of hoxA or hoxB to the function of

phytochrome (FphA), the stress behavior of the strains was tested.

Stress was applied by adding hydrogen peroxide (H2O2), mena-

dione (generates free radicals and superoxide), or tert-butyl

hydroperoxide (tBooH) (organic hydroperoxide) to the medium.

Similar to phytochrome mutants (Yu et al, 2016; Igbalajobi et al,

2019), both hox-deletion strains were more resistant toward mena-

dione and H2O2 and more sensitive toward tBooH (Fig 2C). The

higher stress resistance of the phytochrome mutant, and the hoxA

and hoxB mutants, may be explained through the regulation of

stress-related genes, such as catalases, by phytochrome. It was

shown that they are upregulated in the absence of phytochrome

(Igbalajobi et al, 2019; Igbalajobi et al, 2020). In addition, there is

evidence that under some stress conditions, human HO-1 is prote-

olytically processed, shuttles into nuclei, and fulfills an unknown

function there (Lin et al, 2007). Such an additional function in A.

alternata may explain the slightly higher sensitivity of the hoxB

mutant as compared to the hoxA or the fphA mutant. Taken

together, the results suggest that HoxA and HoxB could provide the

chromophore for phytochrome.

Most HO enzymes catalyze the conversion of heme to biliverdin

IXa or other isomers, depending on the cleavage site. Biliverdin IXa
is used by bacterial phytochromes as chromophore (Lamparter et al,

2003). To investigate whether HoxA and HoxB convert heme into a

functional chromophore, several in vitro assays were performed.

HoxA was expressed in E. coli without the hydrophobic C-terminal

membrane anchor (HoxAΔCTA) and HoxB in Pichia pastoris. HoxB

overexpression in E. coli rendered an inactive protein (Appendix Fig

S2). Spectral analyses of the enriched proteins did not show any

evidence for heme binding already during the expression or the

subsequent purification. We then added hemin and tested for heme

binding. We started with a solution of 1 µM hemin and added HoxA

or HoxB to a final concentration of 10 µM. The heme spectrum

changed slightly after protein addition, suggesting heme binding.

Afterward, the hemin concentration was stepwise increased up to

8 µM. At each step, absorption spectra were recorded. Binding of

hemin by HoxA resulted in a peak at 408 nm. At 3 µM hemin, a

shoulder appeared in the spectrum between 320 and 380 nm. This

resembled free hemin, suggesting that not all HoxA molecules were

active or able to bind the chromophore which could be caused by

partial oligomerization (Appendix Fig S3A). In the corresponding

experiment with HoxB, the spectra resembled the spectra of HoxA

(with a peak at 410 nm), but the shoulder in the spectrum was more

pronounced and increased faster (Appendix Fig S3B). Hence, both

proteins are able to bind heme. Stoichiometries for heme binding

were not determined as the protein preparations were not pure.

We then characterized the catalytic activity of HoxA and HoxB in

the presence of ferredoxin as electron donor. 50 µM HoxA or HoxB,

or 25 µM of each protein combined in one reaction, was incubated

with 10 µM hemin and incubated for 10min. When HoxA and HoxB

were combined, HPLC analyses of the reaction products revealed a

peak with a retention time 1–2.5 min larger than for the biliverdin

standard (Appendix Fig S3C). The small difference of the retention

time could point to minor modifications of the chromophore,

although the spectrum matched well with the biliverdin standard

(Appendix Fig S3D). In order to show that the produced biliverdin

product is able to autocatalytically assemble with phytochrome, the

photosensory domain (PGP, 68 kDa) of FphA was added to the

assay above and spectra recorded every 30 s (Appendix Fig S3E).

Whereas the Soret band decreased over time, the Q band increased,

proving the functionality of the chromophore. The maxima of the

resulting Pr form was 702 nm and resembled the maxima of bili-

verdin assembled FphA in the Pr form with 705 nm (Blumenstein

et al, 2005). To test whether the in vivo activity of HOXs is the sum

of HoxA and HoxB activities, we co-expressed HoxA or HoxB alone

or in combination along with the photosensory domain (PGP) of A.

nidulans FphA in E. coli. In all cases, low expression protein levels

were maintained to avoid oligomerization and inactivation of HoxB.

As a control, we co-expressed the Pseudomonas aeruginosa HOX,

BphO (Blumenstein et al, 2005) (Fig 3A). In all four cases, functional

photosensory domains were obtained (Fig 3B–E). The covalent

insertion of the chromophore into PGP was further confirmed by

Zn2+-induced red fluorescence after protein separation in a polyacry-

lamide gel (Fig 3A, inset). Only about 5% of the amount of assem-

bled PGP was obtained when A. alternata HoxA in combination
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with HoxB was used instead of the bacterial HO (Fig 3A). This

amount was even lower, when only HoxA (1%) or HoxB (0.7%)

was expressed, suggesting that the activity of HoxA and HoxB

together is higher than the sum of both. The reason for the much

higher activity of the bacterial enzyme in comparison with the

fungal enzymes may be the lack of appropriate electron donors for

the A. alternata enzymes.

Both heme oxygenases reside at the outer
mitochondrial membrane

Next, the subcellular localization of A. alternata HoxA and HoxB

was investigated by heterologous expression of GFP-tagged

versions in A. nidulans (Fig 4A). The observed GFP-labeled struc-

tures resembled mitochondria, as confirmed with the MitoTracker

A

B

Figure 1. Phylogenetic analysis of HOs.

A A phylogenetic tree of 161 different HO sequences was calculated. HOs were aligned with Clustal Omega. Afterward, the sequences were trimmed by trimAL with gap
threshold 0.8 and conservation percentage of 70%. The tree was calculated with PhyML with 200 bootstrap cycles and the AIK parameter switched on. Visualization
was done in iTOL. Within the two fungal clades, two lichen-derived sequences are shaded in dark blue.

B Alignment of the heme-binding region of several HOs. The heme-coordinating histidine is indicated with a star. HoxB lacks this histidine, like HO-2 from A.
thaliana.
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co-staining (Suelmann & Fischer, 2000). Therefore, we next tested

whether the enzymes localize inside of mitochondria or are

attached to the outer mitochondrial membrane (Fig 4B). Cells were

fractionated by two sequential centrifugation steps. After the first

low-speed centrifugation, mitochondria should be still present in

the supernatant (S1), whereas after the second higher-speed

centrifugation, mitochondria should be enriched in the pellet (P2).

This pellet fraction was used to test the sensitivity of the proteins

toward proteinase K treatment (P2 +PK). HoxA-GFP and HoxB-GFP

were both detected in the mitochondrial fraction and were comple-

tely degraded after addition of proteinase K. As a control, we stud-

ied a mitochondrial matrix protein. We used the N-terminal part of

citrate synthase and fused it to GFP. The construct was used before

for mitochondrial labeling (Suelmann & Fischer, 2000). The fusion

protein has a molecular mass of 41 kDa, although the apparent

molecular mass in the SDS–PAGE is less. After import, the protein

has a predicted molecular mass of 35 kDa. In crude extracts, both

bands, and in addition some degradation products, were detectable,

suggesting that not all proteins are imported into mitochondria.

After proteinase K treatment of the second pellet fraction, the 35

kDa protein band remained, plus a smaller degradation product.

The small protein could be free GFP. From these experiments, we

conclude that HoxA is attached to the outer mitochondrial

membrane.

A C-terminal anchor (CTA) of HoxA is necessary and sufficient for
mitochondrial targeting

None of the HOs comprises an N-terminal mitochondrial targeting

sequence. However, we identified a hydrophobic region at the

C-terminus of HoxA. To test whether this C-terminal sequence is

required for mitochondrial targeting, we removed the last 20

amino acids from the protein and expressed it as GFP fusion

protein in A. nidulans. The truncated protein localized in the cyto-

plasm (Fig 4C). Next, we asked whether the C-terminal sequence is

sufficient for mitochondrial targeting and fused the sequence to

GFP. Indeed, the GFP molecule labeled mitochondria. These results

suggest that the C-terminal sequence functions as an anchor for

the protein.

Heme oxygenases form a complex with phytochrome

In order to test homo- or heterodimer formation of A. alternata HOs,

bimolecular fluorescence complementation (BiFC, split-YFP) was

used. HoxA and HoxB were expressed as fusion proteins with the N-

terminal or the C-terminal half of YFP in A. nidulans. Interaction of

two proteins restores YFP fluorescence. We found that all three

combinations, HoxA-HoxA, HoxA-HoxB, and HoxB-HoxB, inter-

acted at mitochondria. Moreover, the same results were obtained

with the combination of HoxA or HoxB with phytochrome (Fig 5A).

As a negative control, YFP-N-YpdA (Yu et al, 2016) was tested with

either YFP-C-HoxA or YFP-C-HoxB. These combinations did not

result in reconstitution of the fluorescent YFP protein.

HoxA dimerization was confirmed by size-exclusion chromatog-

raphy (SEC) (Fig 5B). Calibration of the column was performed with

cytochrome C, carbonic anhydrase, albumin, and alcohol dehydro-

genase (Appendix Fig S3F). For HoxB SEC failed, because of impuri-

ties after enrichment from P. pastoris. As a further proof for protein–

protein interaction, we co-expressed HoxA, HoxB, and the photosen-

sory domain of FphA (Strep-tagged) in E. coli. After Strep-tag

A C

B

Figure 2. Characterization of HoxA and HoxB from A. alternata.

A Scheme of HoxA and HoxB. The open reading frame of hoxA is interrupted by one 67 bp long intron (RNA-seq data) and encodes a protein of 380 amino acids with a
predicted mass of 42.5 kDa. The protein contains a heme-binding pocket, a HemeO-like superfamily domain and a C-terminal putative membrane anchor (CTA). In
comparison, hoxB is interrupted by a 50 bp intron. The protein (509 amino acids, 55.9 kDa) contains only the HemeO-like superfamily domain.

B Effect of the deletion of hoxA or hoxB on red-light induction of the ccgA gene. Alternaria alternata strains were grown for 36 h at 28°C. Samples were illuminated for 1
h in red light, while controls were kept in the dark. The amount of ccgA transcript was quantified by qRT–PCR analyses with the histone 2B gene as housekeeping
gene. Error bars represent the standard deviation (n = 3).

C Comparison of wild-type colonies with phytochrome and hox-deletion strains in the presence of 0.12mM menadione (MD), 7mM H2O2 or 2mM tert-butyl
hydroperoxide (tBooH). The strains were incubated for 5 days at 28°C in the dark.
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purification, we identified HoxA and HoxB in the photosensory

domain fraction (Fig 5C). To assess whether insertion of the chro-

mophore into the photosensory domain influences its interaction

with HoxA, which is proposed to be the key factor for assembly

because of the membrane anchor, biolayer interferometry (BLI) was

used for the analysis of interactions of the purified proteins (Fig 6,

Appendix Fig S4). Association and dissociation curves were moni-

tored, and the KD for the interaction of Apo-PGP and HoxA was

calculated to be 1.13 µM (Fig 6A) and for Holo-PGP 64.6 mM (Fig

6B). The sudden increase of the signal after addition of the

chromophore-loaded PGP is due to the absorption of the chro-

mophore (Fig 6B). The 57,000 times weaker interaction of the holo-

protein suggests immediate dissociation from HoxA after

chromophore insertion.

Discussion

Taken together our results, we propose the following model for the

biosynthesis of functional phytochrome in fungi: The FphA apopro-

tein is translated in the cytoplasm and travels to the surface of mito-

chondria where it receives the chromophore (the electron donor for

the heme oxidation is yet unknown). The holoprotein is then

released back into the cytoplasm where it interacts with the phos-

photransfer protein YpdA to induce the HOG pathway and

ultimately the transcription factor AtfA. In addition, a fraction of

Holo-FphA is imported into the nucleus to control the activity of

chromatin remodeling enzymes (Fig 7). Mitochondria can thus be

considered as assembly platforms for phytochrome in fungi. Given

that mitochondria arose in evolution before chloroplasts, our

A

B C

D E

Figure 3. Analysis of the HO enzymatic activities.

A UV–Vis spectra of the photosensory domain of A. nidulans FphA (PGP) after co-expression together with bacterial HO (BphO) or A. alternata HoxA, HoxB, or HoxA
plus HoxB overnight at 20°C in the dark. PGP was purified via the Strep-tag system and concentrated before recording the spectra. Inset, left lane: Molecular mass
markers stained with Coomassie Blue. Middle lanes: Zinc-induced red fluorescence (labeled zinc, Zn2+) of equal amounts of PGP expressed in E. coli along with
bacterial BphO (O) or A. alternata HoxA plus HoxB (A + B). Right lanes: Coomassie Blue staining (C.B.) of the polyacrylamide gel used for the Zn2+ fluorescence.

B–D Red/far-red light induced difference spectrum of purified PGP expressed with HoxA and HoxB or with HoxA or HoxB alone after large-scale batch fermentation and
purification.

E Overlay of normalized (at 705 nm) difference spectra displayed in B-D plus a difference spectrum of the photosensory domain in the presence of the bacterial HO
BphO as in A.

Source data are available online for this figure.
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findings tempt us to speculate that chromophore biosynthesis at

mitochondria is more ancient than in chloroplasts (Speijer et al,

2020).

In this work, we identified two HOs in A. alternata and showed

catalytic activity for both. The activities when expressed in E. coli

were quite low as compared to the activity of the bacterial HO used

in our experiments. This may reflect their real activities in A. alter-

nata, but it could also be that the HO activities in the fungus are

significantly higher. One reason could be the lack of an appropriate

electron donor in E. coli and in the in vitro experiments. The fact

that HoxB undoubtedly produced active photosensory domains of

FphA when co-expressed in E. coli was surprising, because a

conserved histidine is lacking. This may explain the lower activity

as compared to HoxA. However, we found evidence that, in addition

to its catalytic activity, HoxB could stimulate the HoxA activity. The

mechanism of this stimulation remains to be determined, but it has

been shown that human HO-2 may have some chaperone functions

(Vanella et al, 2013; Vanella et al, 2016). In addition, it was shown

that human HO-1 fulfills functions in nuclei under certain stress

conditions (Lin et al, 2007). Further work is required to unravel

whether such a specialization of the two enzymes exists in fungi.

The fact that phytochrome chromophore assembly in A. alternata

occurs at the surface of mitochondria leads to the question why

there and not in the cytoplasm? Heme biosynthesis is initiation and

completed in mitochondria in animals and fungi. Glycine and

succinyl-CoA are converted in mitochondria to 5-aminolevulinic

acid, which is transported to the cytoplasm, further converted to

coproporphyrinogen III, which in turn is re-imported into mitochon-

dria, where the final steps of heme biosynthesis occur. Heme is then

either used in mitochondria for, e.g., cytochrome formation or

exported into the cytoplasm (Kim et al, 2012). In plants, the final

steps take place in chloroplasts. In the cytoplasm, heme is inserted

A

B

C D

Figure 4. Localization of A. alternata HoxA and HoxB in A. nidulans.

A Strains were grown overnight at 28°C. Mitochondria were stained for 30min with MitoTracker Red CMOXRos. Microscopy was done with a LSM 900 Airyscan 2
(Zeiss). Pictures were taken in the GFP and the RFP channel and overlaid (merge).

B HoxA-GFP and CitA-GFP (ca. 170 amino acids from the N-terminus of citrate synthase) were expressed overnight at 30°C in minimal medium with 2% threonine
and 0.2% glucose. Mitochondria were incubated with 100 lg/ml proteinase K (PK) for 20min on ice. Crude extract (CE), supernatant 1 (S1) containing
mitochondria, pellet 1 (P1), supernatant 2 (S2), and pellet 2 (P2) with mitochondria were analyzed by Western Blot using anti-GFP antibodies. CitA-GFPc =
cytoplasmic form and CitA-GFPi = imported version.

C, D Role of the C-terminal anchor in HoxA. Microscopy was done as in A using a fluorescent microscope without the Airyscan technology. C, Expression of GFP-HoxA
lacking the C-terminal anchor (ΔCTA) in A. alternata. D, Expression of GFP fused to the CTA motif.

Source data are available online for this figure.
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into hemoproteins such as catalases. Likewise, HOs in A. alternata

could use cytoplasmic heme to produce the phytochrome chro-

mophore. HOs would thus compete for heme with the other

enzymes which need the incorporation of a heme molecule for func-

tion. However, in the case of HOs, heme is catalytically converted

and normally released for further degradation. Such degradation has

to be also postulated for the A. alternata cytoplasm, because heme

concentrations need to be controlled well, e.g., by high affinity

heme-binding proteins like peroxiredoxins, because free heme can

produce free radicals through Fenton chemistry (Fenton, 1894;

Gozzelino et al, 2010). Hence, A. alternata HoxA and HoxB would

largely interfere with heme homeostasis. One way of separating

heme degradation from chromophore biosynthesis is compartmen-

talization. In the case of heme oxidation for chromophore forma-

tion, further degradation of the linear tetrapyrrole has to be

prevented. This could be the reason for the observed complex

formation between HOs and phytochrome. This minimizes the

chances that linearized heme is released and further degraded. This

could be an example for the recently postulated metabolon concept

(Piel et al, 2019). Metabolons are protein complexes of interacting

enzymes in metabolic pathways. The created microenvironments

A

B C

Figure 5. Characterization of the HO-phytochrome protein complex.

A BiFC (split-YFP) analysis of HOs and phytochrome. Strains (SChS29-33) were grown overnight at 28°C minimal medium with 2% threonine and 0.2% glucose.
MitoTracker Red CMOXRos was used for mitochondrial staining. The MitoTracker signal was observed in the RFP and the split-YFP signal in the YFP channel of the
fluorescent microscope. Pictures in both channels were overlaid (merge). The left pictures show the same hyphae in differential interference contrast (DIC). The scale
bar represents 10 µm.

B HoxA was expressed in E. coli 20 h at 15°C. Purification was performed with the Strep-tag system. HoxA was analyzed by size-exclusion chromatography. Absorption
was measured at 280 nm.

C Co-expression of the HOXs along with the photosensory domain of A. nidulans FphA (PGP) overnight at 20°C. PGP was purified via the Strep-tag system and the eluate
concentrated (upper panel). The lanes were loaded as follows: negative control before induction (�), 20 h after induction (20 h) crude extract (CE), supernatant (S),
pellet (P), flow through (F), and eluate (E). The fractions were analyzed by Western blot using the anti-His antibody (lower panel).

Source data are available online for this figure.

A B

Figure 6. Analysis of the interaction of HO and the phytochrome
photosensory domain in vitro.

A, B Biolayer interferometry analysis with Apo-PGP A and holo-PGP B.
Proteins were immobilized at a streptavidin sensor tip. Free binding sites
were blocked with biotin. Association and dissociated kinetics were
recorded at the indicated HoxA concentrations. Kd values were
calculated with the manufacturer’s software using a global fit for both
experiments.

ª 2021 The Authors The EMBO Journal 40: e108083 | 2021 7 of 11

Christian Streng et al The EMBO Journal



facilitate substrate transport and specificity. In the case of phyto-

chrome chromophore assembly, the protein complex could also be

important for limitation of the enzymatic activity to the needs. If

apo-phytochrome binds to the HO complex, heme should be

oxidized and transferred to form holo-phytochrome. In the absence

of apo-phytochrome though, HO should be inactive in order to

prevent uncontrolled degradation of heme. This could be achieved

by modulation of the HO activity or through the accessibility of

heme to the active center if phytochrome is missing from the meta-

bolon. Supporting our metabolon model, protein complex formation

between HO and phytochrome was also shown in the bacterium

Pseudomonas syringae (Shah et al, 2012). Furthermore, in the

pathogenic P. aeruginosa two heme oxygenases are expressed, one

of which produces the chromophore for phytochrome and another

one is used for heme degradation and iron acquisition (Wegele et al,

2004). Plants harbor also several HO with different catalytic activi-

ties, perhaps also serving distinct functions besides chromophore

production (Davis et al, 2001).

Another reason for mitochondrial association of the phytochrome

metabolon could be the need for an electron donor with a negative

redox potential, such as ferredoxin. Although mitochondria are opti-

mized organelles for electron flow, the localization of the phyto-

chrome metabolon at the outside of mitochondria raises the

question of how the electrons can be shuttled from the inner mito-

chondrial membrane toward the outside of the outer membrane.

This remains to be resolved. Alternatively, cytoplasmic electron

donors could be employed as it was shown for cytosolic iron/sulfur

cluster biogenesis (Zhang et al, 2014). One challenge for future

research will be to investigate whether the model proposed for

fungal phytochrome biosynthesis may be generalized also to plant

phytochrome.

Our results suggest that the two HOs of A. alternata are special-

ized enzymes for chromophore assembly at mitochondria. This

special function may also explain the low enzymatic activity. One

can speculate that for heme degradation, higher activities are to be

expected. It will be the challenge of future research to decipher the

interplay between the two HOs and to identify HOs for heme degra-

dation and unravel their interplay in heme homeostasis and chro-

mophore production.

Materials and Methods

Strains, plasmids, and culture conditions

Alternaria alternata ATC 66981 cultures were grown on modified

Czapek Doth broth (mCDB) agar and incubated 1–12 days at 28°C.

Supplemented minimal medium (MM) for A. nidulans was prepared

as reported, and standard strain construction protocols were used

(K€afer, 1977). Growth of Pichia pastoris was performed in BMGY or

BMMY media according to the manufacturer’s protocol (Invitrogen).

All strains are listed in Appendix Table S1, oligonucleotides in

Appendix Table S2, and plasmids in Appendix Table S3.

Gene structure and deletion of hoxA and hoxB in A. alternata

The open reading frame of hoxA is interrupted by one 67 bp long

intron (RNA-seq data) and encodes a protein of 380 amino acids

with a predicted mass of 42.5 kDa. In comparison, hoxB is also inter-

rupted by one intron (50 bp) but contains only the HemeO-like

superfamily domain. The hoxB gene encodes a protein of 509 amino

acids with a predicted mass of 55.9 kDa. We used two 20 bp proto-

spacers adjacent to a 30AGG protospacer-adjacent motif (PAM) to

target the beginning and the end of the gene. The protospacers were

introduced into plasmids pFC332 and pFC330 by PCR and cloning.

The resulting plasmids, which contain the Cas9-coding sequence

from Streptococcus pyogenes (codon optimized for Aspergillus niger)

and the single-guide RNA (sgRNA) targeting the genes of interest

(hoxA and hoxB), were used for transformation of A. alternata

SMW24 (DpyrG in ATCC66981 wild type). The hygromycin resis-

tance and the pyrG auxotrophy cassettes residing in a self-

replicating plasmid (AMA plasmid) were used for selection. The

plasmid was constructed using PCR on PFC334 with primers, which

included the new protospacer. Subsequently, a builder reaction and

the transformation was done as described, but in this case, two

protospacers were used to target the beginning and the end of the

gene of interest (Wenderoth et al, 2019).

RNA isolation

Alternaria alternata conidia were inoculated in 20–25ml mCDB

containing uracil and uridine in a Ø 3.5 cm Petri dish and incubated

for 40 h in darkness at 28°C. Subsequently, mycelium was illumi-

nated 1h with red light and controls were kept in the dark. The

mycelia were harvested in dim-red light and frozen immediately in

liquid nitrogen. For the extraction, a "Fungal RNA Extraction Kit"

from Omega was used. Disruption of the cells was performed by

grinding in liquid nitrogen. To remove DNA contaminations, the

RNA was treated with TURBO DNA-free kit. After the treatment,

RNA was diluted to 50 ng/ll with DEPC water. SensiFAST SYBR &

Fluorescein One-Step Kit from Bioline (Luckenwalde, Germany) was

used for quantitative real-time PCR. Each reaction was carried out

using 25 ll containing 0.2 lM primers and 100 ng RNA. The

program started with 10min of the reverse transcription reaction at

Figure 7. Current model illustrating the role of mitochondria as
chromophore-assembly stations for phytochrome.

For details, see the Discussion.
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45°C, followed by 2.5min at 95°C for the inactivation of the reverse

transcriptase and 40 cycles of polymerase chain reaction (10 s at

95°C and then 30 s at 58°C). To assess the quality of the resulting

PCR product, melting curve analyses were carried out (80 cycles,

95–58°C with 10 s per step). The h2b gene was used for normaliza-

tion. Each expression level is the average of three biological repli-

cates. The error is shown as standard deviation for the replicates.

Expression of HOs in E. coli or P. pastoris

HoxA was cloned into the plasmid pASK. pASK contains an

anhydrotetracycline-inducible promoter (tet) and an ampicillin resis-

tance cassette. For the expression, E. coli was grown at 37°C until

OD600 0.8 was reached. Subsequently, the baffled flask was cooled

down to 15°C and induction with 0.2 µg/ml AHT was performed for

20 h. The pellet of 1 l was resuspended in 10ml extraction buffer

and the cells ruptured using a French press at 1,500 psi. Cell debris

was pelleted by centrifugation prior to the application to the

column. Purification was done using the strep-tag system with

modified buffers: extraction buffer (50mM Tris–HCl pH 8.0, 100

mM NaCl, 5mM MgCl2, 0.005% Triton X-100, 1 mM PMSF, 1 pill

for 10ml pierce protease inhibitor cocktail EDTA free (Thermo

Scientific), washing buffer (137mM NaCl, 2.7 mM KCl, 50mM

Na2HPO4, 5 mM K2HPO4, pH 7.4 was adjusted with H3PO4), and

elution buffer (50mM Tris–HCl, 3mM Desthiobiotin). For better

solubility, the C-terminal anchor was deleted. HoxB could not be

purified using this system, because HoxB aggregated. In order to

overcome this problem, HoxB-strep was cloned to pPIC3.5K.

pPIC3.5K is a vector containing a histidine auxotrophy marker and

the methanol-inducible AOX1 promoter for P. pastoris. P. pastoris

GS115 was transformed with SacI linearized vector to insert into the

AOX1 locus. The transformants were screened for mut+ phenotype.

For protein expression, P. pastoris was grown in 50ml BMGY over-

night at 30°C. After incubation, cells were pelleted and 400ml

BMMY with OD600 1.0 were inoculated. Expression was performed

for 2.5 days, while every 24 h methanol was added to maintain a

concentration of 0.5% (v/v). 1 l culture was pelleted and resus-

pended in 20mM MES pH 6. Cells were lysed using glass beads.

Purification was done using a Mono S FPLC column. The protein

eluted in a gradient ranging from 350mM NaCl to 450mM NaCl.

HoxB was not as pure as HoxA after affinity chromatography.

Further purification using the Strep-tag failed.

Expression of phytochrome (FphA) or its photosensory domain
(PGP) along with HOs in E. coli

We used the plasmids pASK for FphA PGP and pACYC Duet or pET

for the Hox. pACYC Duet contains two MCS, while pET contains one

MCS with an IPTG-inducible T7 promoter. Cultures were grown in

500ml LB at 37°C. After OD600 0.8 was reached, 1 mM IPTG was

added to the culture to induce the HO. After 1 h, the culture was

cooled down to 20°C and 0.2 µg/ml AHT was added to induce the

induction of FphA PGP. FphA PGP was purified using French press

and the strep-tactin system (IBA). Subsequently, the protein was

concentrated via vivaspin and the spectra were measured in the dark.

To improve the spectral results and in order to analyze the

photoconvertability of PGP, we used a 5 l fermenter (Bioflo 115,

Eppendorf) with the same protocol. Additionally, the fermenter was

set to 400 rpm, pH 7.5, and an aeration rate of 5 l air per min. For

co-expression of HoxA and HoxB, we used the pACYC Duet plasmid.

The protein samples were illuminated 2min with red or far-red light

to photoconvert PGP between Pr and Pfr forms. Results are shown

as difference spectra. This procedure doubled the yield of functional

PGP in comparison with the expression in flask cultures. HoxA

alone and the co-expression of HoxA and HoxB with PGP yielded

functional photoconvertible phytochrome, which suggests HoxA is

sufficient.

Zinc-induced red fluorescence

Covalent chromophore attachment has been verified by zinc-

induced red fluorescence as described previously (Berkelman &

Lagarias, 1986). Free bilins as well as (denatured) biliproteins form

fluorescent complexes with zinc ions that can be visualized under

UV light. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS–PAGE) was performed as described (Laemmli, 1970). Tris-

glycine running buffer as well as Tris-buffers used for the 5% stack-

ing gel and the 10% separating gel contained 1mM zinc acetate.

Zinc fluorescence was visualized by transillumination with UV light.

Afterward, the same gel was Coomassie-stained using ROTI�Blue

quick (Carl Roth, Karlsruhe). Protein concentrations were deter-

mined using ROTI�Quant (Carl Roth, Karlsruhe) according to the

manufacturer’s instructions.

Heme oxygenase assays

For the analysis of the catalytic activity of HoxA and HoxB, enriched

enzymes were used. 50 µM HoxA or HoxB or 25 µM of each protein

combined in one reaction was incubated with 10 µM hemin, 1.5 mg/

ml BSA, 4.6 µM petF, 0.025 U/ml petH, 10 µM catalase, 5 mM tiron,

1.05mM glucose-6-phosphate, 0.105 µM NADP+ and 0.15 U/ml

glucose-6-phosphate-dehydroxygenase, spinach ferredoxin (PetF,

Sigma) (4.6 µM), and ferredoxin reductase (PetH, Sigma) (4.6 µM).

Spectra from 300 nm to 1,100 nm were recorded every 30 s for 10

min (Photometer: 8453 UV visible System (Agilent)). For assays

with phytochrome, 150 µg FphA was added per ml.

HPLC analysis

Hemeoxygenase assay products were pre-purified. To this end, the

sample was diluted 1:10 in 0.1% TFA immediately after the assay to

stop the reaction. Next, Sep-Pak C18 was equilibrated with subse-

quent addition of 3 ml acetonitrile, 3 ml H2O, 3ml 0.1% TFA, 3ml

10% methanol in 0.1% TFA, 3ml acetonitrile, 3 ml H2O, and 3ml

10% methanol in 0.1% TFA. The sample was added after the last

step, and the cartridge was washed with 6ml 0.1% TFA, 6ml

acetonitrile (20%):0.1%TFA (80%) and eluted with 1ml acetoni-

trile. After drying using a SpeedVac, the sample was dissolved in 10

µl DMSO and diluted in 110 µl acetone (50%):20mM formic acid

(50%). The sample was applied to the Ultracarb 5 U column

(Phenomenex). Bilins were detected at 350 and 650 nm.

Expression of HOs in A. nidulans

The expression of HoxA and/or HoxB in A. nidulans was achieved

using the plasmid pMCB17apx as vector basis. The plasmid harbors
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a cloning site using AscI and PacI restriction enzymes. The cloned

gene is under the control of the alcA promoter, which can be

repressed by glucose and derepressed by glycerol and induced by

threonine. It also encodes an N-terminal tag of GFP, YFP-C-

terminus, YFP-N-terminus, or HA.

Microscopy

For microscopic analysis, A. nidulans strains were grown 16 h at

28°C in MM containing 2% glycerol or 2% threonine with 0.2%

glucose. Subsequently, the culture was stained for 30min with Mito-

Tracker Red CMXRos (M7512, Thermo Fisher) according to the

manufacturer’s protocol. Fluorescence microscopy was performed

using AxioImager Z1 (Zeiss), the software AxioVision V4.5, and

Zen. Alternatively, we used the LSM 900 Airyscan 2 (Zeiss).

Mitochondrial fractionation

Aspergillus nidulans protoplasts were applied to the “Yeast Mito-

chondria Isolation Kit” (SigmA) and mitochondria isolated as

described in the manufacturer’s protocol using detergent lysis

(1:200 dilution). In the first centrifugational step, at 600× g mito-

chondria were obtained in the supernatant (S1). In the second

centrifugational step, at 6,500× g mitochondria were sedimented in

the pellet (P2). Proteins were analyzed in a Western blot using anti-

GFP antibodies (Roche). For precipitation of the GFP fusion protein

(GFP trap), the protein extracts were incubated with the anti-GFP

antibody and protein G agarose (Roche).

BLI (biolayer interferometry)

For BLI assays, the BLItz system (FORTEBIO) was used.

Streptavidin-coated sensor tips were coated with purified 30mg/ml

Apo- or Holo-PGP (tagged with streptavidin-binding protein) in

analysis buffer (50mM Tris–HCl, pH 7.8, 300mM NaCl, 10% glyc-

erol, 0.05% Tween-20). Free binding sites were blocked with 5mM

biotin. Measurements were performed with purified HoxA at the

indicated concentrations. The baseline was measured for 60 s, bind-

ing of PGP to the sensor tip was done for 120 s and blocking for 180

s. The resulting new baseline was measured for 60 s. Association

and dissociation were measured for 120 s. For calculating associa-

tion and dissociation rates, global fit corrections were activated in

the software. Resulting KD values are presented as mean of the

values measured at the different concentrations.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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