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I. Introduction

Maintaining cell polarity is essential for cells to
ensure homeostasis and their proper function-
ing (Goehring and Grill 2013; Wu and Lew
2013). Symmetry breaking is often preceded
by cytoskeleton-dependent polarization of cer-
tain key proteins as observed in epithelial cells
with apical-basal polarity, neuronal differentia-
tion from dendrites to axons, and migrating
cells. Filamentous fungi are highly polarized
eukaryotic cells, which continuously elongate
their hyphae at the tips. Some distance back
from the tip, hyphae can initiate new sites of

polar growth in the process of branch forma-
tion. The establishment and maintenance of
polar growth is one fascinating question in
biology. Filamentous fungi are widely used as
model systems for the analysis of the relation-
ship between cell polarity and shape (Harris
2006; Fischer et al. 2008; Riquelme et al. 2011,
2018; Takeshita et al. 2014). Some filamentous
fungi are pathogenic to animals and plants, and
often growth in the host is accompanied by a
change from hyphal growth to yeast-like
growth or vice versa (dimorphism) (Garcia-
Vidal et al. 2013). Other fungi are useful in
biotechnology, such as enzyme production
and fermentation in food industry due to their
high ability of enzyme secretion (Punt et al.
2011). Thus, the analysis of polarized growth
of filamentous fungi can contribute to the med-
ical, agricultural, and biotechnological fields.

The filamentous ascomycete Aspergillus
nidulans has been employed worldwide for
more than 60 years as a model organism
because it is closely related to clinically and
economically important Aspergilli and it is eas-
ily manipulated in the laboratory. The most
characteristic cell type of filamentous fungi is
the vegetative hypha. This nonspecialized, syn-
cytial (multinucleated) cell is characterized by a
continuous polarized growth mode, mediated
at the tip through the addition of new material
that is transported from distal regions. In
single-cell yeasts, such as in budding yeast Sac-
charomyces cerevisiae and in fission yeast Schi-
zosaccharomyces pombe, polarized growth is
restricted to certain times during the cell
cycle, whereas in filamentous fungi cell exten-
sion is a continuous and indefinite process.
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The extension of hyphal tips requires the
continuous enlargement of the cell membrane
and the extension of the cell wall. Both are
achieved through massive vesicle fusion at the
tip. The vesicles transport cell wall-synthesizing
enzymes and provide new membrane. Vesicle
transport as well as all other dynamic processes
related to polar growth, such as organelle dupli-
cation and distribution, or the transport of
RNA, proteins, or lipids, requires cytoskeletal
elements. Many of those components were dis-
covered early on in mutant screenings followed
by genetic and later molecular biological ana-
lyses. For instance, tubulin was discovered
through a combination of biochemical analyses
with the analysis of mutants with altered sensi-
tivity against the microtubule drug benomyl
(benA) in A. nidulans (Oakley 2004). Mitotic
elements were isolated as temperature-sensitive
mutants with a block-in-mitosis (bimA, bimC,
bimE) or mutants, which never entered mitosis
(never-in-mitosis, nimA, nimX, nimT) (Orr and
Rosenberger 1976; Morris and Enos 1992;
Osmani and Mirabito 2004). In other mutants
of this screening, nuclear distribution (nudA,
nudE) was affected (Meyer et al. 1988). In
subsequent suppressor screenings using the
benA33 mutant, tubA and mipA were discov-
ered (Morris et al. 1979; Oakley and Oakley
1989). The genes encoded beta tubulin (benA),
alpha tubulin (tubA), or gamma tubulin
(mipA), dynein (nudA), or kinesin (bimC).
The mutagenesis approaches performed in S.
cerevisiae and S. pombe but also filamentous
fungi such as A. nidulans revealed a wealth of
information, which could probably not have
generated by other means. The improved
molecular biological methods and the genome
information opened the possibility of reverse-
genetic approaches. With these approaches the
role of proteins of conserved pathways was
studied in other organisms and organism-
specific functions were discovered. However,
recent major advances in cost-effective
sequencing of entire genomes have the great
potential to revolutionize our approaches
again and allow intelligent mutant screening
followed by bulk sequencing of mutant gen-
omes. This strategy reduced mutant analysis
from months or years to weeks or months
(Tan et al. 2014).

Polarized growth is thus studied by genetic,
molecular biological, biochemical, and cell
biological methods. However, this research field
has benefited more than others from the combi-
nation of the still ongoing improvement of the
microscopic techniques and the development of
fluorescent reporter proteins in recent years.
Several overviews have summarized different
aspects of polarized growth in fungi (Chang
and Peter 2003; Harris and Momany 2004;
Penalva 2010; Berepiki et al. 2011; Steinberg
2011, 2014; Sudbery 2011; Egan et al. 2012a).

Here we review recent findings unraveling
the mechanism of polarized growth with special
emphasis on the roles of the actin and microtu-
bule (MT) cytoskeletons, polarity markers link-
ing the two cytoskeletons.

II. The Actin Cytoskeleton

The actin cytoskeleton plays a central role in
cell morphology of eukaryotic cells (Domin-
guez and Holmes 2011). Actin filaments (F-
actin), which are composed of linear polymers
of G-actin subunits, generate force against the
plasma membrane and also act as tracks for
myosin motors. The dynamic cycles of poly-
merization and depolymerization of G-actin
and F-actin are involved in many different key
cellular processes, such as cell motility, cytoki-
nesis, secretion, and the control of cell mor-
phology (Michelot and Drubin 2011).

There are three high-order F-actin struc-
tures with distinct functions in filamentous
fungi: actin rings, patches, and cables (Berepiki
et al. 2011). Studies using anti-actin chemical
agents confirmed that a polymerized actin cyto-
skeleton is required for normal apical growth
and hyphal tip shape in different fungal organ-
isms (Torralba et al. 1998). Phalloidin conju-
gated to fluorescent dyes has been widely used
for imaging F-actin in eukaryotic cells includ-
ing fungi such as budding yeast (Amberg 1998),
fission yeast (Pelham and Chang 2001), and
Ashbya gossypii (Walther and Wendland 2004)
but does not work in most filamentous fungi
(Brent Heath et al. 2003). The immunostaining
of actin using an anti-actin antibody and GFP-
labeled actin or an actin-binding protein (AbpA
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in A. nidulans) revealed the localization of the
F-actin structures, mainly actin rings and actin
patches, in filamentous fungi (Araujo-Bazan
et al. 2008). However, visualization of actin
cables was difficult by these methods. Recently,
specific markers for actin cables, such as Lifeact
and tropomyosin, were developed to visualize
them (Taheri-Talesh et al. 2008; Berepiki et al.
2010; Delgado-Alvarez et al. 2010). Lifeact,
which consists of 17 amino acids from the N-
terminus of Abp140p of S. cerevisiae, has been
shown to be a marker for F-actin binding and
labeling in vitro and in yeast cells (Asakura
et al. 1998; Riedl et al. 2008).

The actin rings in cooperation with class II
myosin function in septum formation (Taheri-
Talesh et al. 2012; Delgado-Alvarez et al. 2014)
(Fig. 1a). Septum formation proceeds according
to the following series of steps: actin and myo-
sin tangle assembly at a septation site, contrac-

tion of the actin ring (or called actomyosin
ring), actin-mediated invagination of the
plasma membrane, and deposition of the chi-
tinous primary septum (Momany and Hamer
1997; Delgado-Alvarez et al. 2014). Mutant
analysis of class II myosin (myoB mutation in
the converter subdomain in A. nidulans) sug-
gests that the motor activity is necessary for the
contraction of the actin ring (Hill et al. 2015).
The actin ring assembly and septum formation
are controlled through the nuclear position and
cell cycle progression in A. nidulans (Harris
2001).

Actin patches are peripheral punctate struc-
tures where probably the endocytic machinery
localizes (Araujo-Bazan et al. 2008) (Fig. 1b). The
predominant localization of these patches at sub-
apical regions suggests spatial coupling of apical
exocytosis and subapical compensatory endocy-
tosis (Penalva 2010). Class I myosins function in

Fig. 1 Distinct roles of actin cytoskeletons and related
myosin in A. nidulans. (a) Actin ring and myosin II
(actomyosin ring) for septation. (b) Actin patch and
myosin I for endocytosis. (c) Actin cables and myosin

V for exocytosis. Scheme of tip growth in A. nidulans
hyphae. Vesicle trafficking via the actin and MT cyto-
skeleton. Before fusion with the plasma membrane,
secretion vesicles accumulate at Spitzenkörper
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endocytosis to support invagination of endocytic
vesicles (Kaksonen et al. 2006). Mutant analysis
of myoA, the class I myosin in A. nidulans,
revealed that the function of MyoA in endocyto-
sis is regulated through phosphorylation by a
member of the p21-activated kinase (PAK) fam-
ily (Yamashita and May 1998). The mutant phe-
notype of genes involved in endocytosis indicates
that endocytosis is essential (Araujo-Bazan et al.
2008). Besides the internalization of extracellular
molecules, plasma membrane proteins, and
lipids by endocytosis, endocytic recycling of
polarizedmaterial at the hyphal tip and a balance
between endocytosis and exocytosis at the
hyphal tip are assumed to control polarized
growth and cell shape (Shaw et al. 2011).

Actin cables are linear bundles of short
actin filaments nucleated by formins that are
present at the apex of the hyphae. As mentioned
before, dynamic actin cables are generally very
difficult to visualize; however, recently specific
markers, such as Lifeact and tropomyosin, were
developed (Taheri-Talesh et al. 2008; Berepiki
et al. 2010; Delgado-Alvarez et al. 2010). In N.
crassa, Lifeact has been used to visualize
dynamic actin cables and patches (Berepiki
et al. 2010; Delgado-Alvarez et al. 2010). How-
ever, it has to be considered that overexpres-
sion of the construct may cause some artifacts
(Bergs et al. 2016). Tropomyosin is a conserved
actin filament-binding protein and regulates
the interaction between actin and myosin in
response to Ca2+ (Gunning et al. 2005). Tropo-
myosin has been used as a marker for actin
cables in A. nidulans and N. crassa (Evangelista
et al. 2002; Pearson et al. 2004; Taheri-Talesh
et al. 2008). GFP-labeled tropomyosin, TpmA in
A. nidulans, revealed the dynamic behavior
with cycles of elongation and shrinkage
(Fig. 1c) (Bergs et al. 2016). Multiple actin
cables were formed from the hyphal tip with
each actin cable showing elongation and
shrinkage in an independent manner.

Actin cables are present at the apex of hyphae and are
thought to serve as tracks for class V myosin-
dependent secretory vesicle transport to the tip
(Fig. 1c) (Taheri-Talesh et al. 2008, 2012; Berepiki
et al. 2011; Pantazopoulou et al. 2014). The “basic”
growth machinery involved in the formation of actin

cables, vesicle transport, and exocytosis, such as for-
min, the polarisome (protein complex Spa2, Pea2,
Aip3/Bud6, and formin Bni1 in S. cerevisiae), class V
myosin, and the exocyst complex (octameric protein
complex involved in the tethering of post-Golgi vesicles
to the plasma membrane prior to vesicle fusion), is
relatively conserved among eukaryotic cells and loca-
lized to the apex of hyphae (Harris et al. 2005; Sudbery
2011). Maturation of late Golgi cisternae into exocytic
post-Golgi carriers was visualized in A. nidulans (Pan-
tazopoulou et al. 2014). These carriers move on a MT-
based bidirectional conveyor belt relaying them to
actin, which ultimately focuses exocytosis at the apex.

III. Spitzenkörper

Before fusion, the secretion vesicles accumulate
at the hyphal tip in a structure called Spitzen-
körperor vesicle supply center (VSC) (Grove and
Bracker 1970; Harris et al. 2005), a special struc-
ture in filamentous fungi, which determines
growth direction of the hyphae (Bartnicki-Garcia
et al. 1995; Riquelme and Sanchez-Leon 2014;
Riquelme et al. 1998, 2014) (Fig. 1c). A VSC in
motion provides a rational basis to predict how
the secretory apparatus generates morpho-
genesis. The Spitzenkörper is believed to func-
tion as a VSC that regulates the delivery of cell
wall-building vesicles to the apical cell surface,
since the simulation analysis of VSC advance as a
Spitzenkörper enables to mimic the hyphal
growth of N. crassa (Bartnicki-Garcı́a et al.
1989; Riquelme et al. 2000). The exact compo-
sition and organization of the Spitzenkörper has
been vigorously elucidated (Riquelme et al. 2007,
2014; Sanchez-Leon et al. 2011; Fajardo-Somera
et al. 2015). In N. crassa, all chitin synthases
localize at the Spitzenkörper core, whereas
macrovesicles carrying a b-1,3-glucan synthase
complex occupy the Spitzenkörper outer layer.
Similar spatial distribution of DnfA and DnfB,
two P4 ATPases, in the Spitzenkörper was
observed inA. nidulans (Schultzhaus et al. 2015).

IV. Septins

As filament-forming proteins, septins can be
considered as a part of the cytoskeleton. Septins
are a conserved family of GTP-binding proteins
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that form filaments in fungi and animals. Dif-
ferent septins form protein complexes with
each other and form heteropolymers showing
a variety of higher-order structures (Mostowy
and Cossart 2012). In S. cerevisiae, five septin
proteins (Cdc3, Cdc10, Cdc11, Cdc12, Shs1)
form an hourglass structure associated with
the plasma membrane at the mother-bud neck
(Bertin et al. 2012). They act as a scaffold for
proteins involved in cell division (Oh and Bi
2011). In filamentous fungi, in addition to sep-
tum formation, septins have been shown to
have roles in morphogenesis, coordinating
nuclear division, and organizing the cytoskele-
ton (Lindsey and Momany 2006; Gladfelter
2010; Bridges and Gladfelter 2014).

In the hyphal form of the human pathogen Candida
albicans, septins form three distinct structures, a dif-
fuse band at the base of hyphae, a bright double ring at
septation sites, and a diffuse cap at hyphal tips (Sudb-
ery 2001; Warenda and Konopka 2002). In the filamen-
tous phytopathogen A. gossypii, septins form a diffuse
cap at hyphal tips and rings composed of discrete bars
at septation sites and at newly emerging branches (Hel-
fer and Gladfelter 2006; DeMay et al. 2009). In C. albi-
cans and A. gossypii, the diffuse cap initially appears at
the hyphal tip and travels with the hyphal tip until an
unknown signal triggers detachment from the tip and
the formation of an anchored, higher-order ring. The
higher-order ring encircles the hyphal cell cortex and
persists at that location, while the tip then continues to
grow. Septation sites are determined by positions of the
high-order ring that detaches from the tip and anchors
at the hyphal cell cortex in these fungi. The structural
change of septins is regulated through their phosphor-
ylation by cyclin-dependent kinases in C. albicans
(Sinha et al. 2007) or septin-associated kinases in A.
gossypii (DeMay et al. 2009).

In A. nidulans and N. crassa, septins form different
higher-order structures, rings, filaments, bars, bands,
and caps (Westfall and Momany 2002; Lindsey et al.
2010; Berepiki and Read 2013; Hernandez-Rodriguez
et al. 2014). They are important for septation, germina-
tion, branch emergence, and asexual spore formation.
In the basidiomycete plant pathogen Ustilago maydis,
septins localize to a variety of structures, collars at the
bud neck and filaments at growing cell tips that run
along the length of the cell and partially colocalize with
MTs (Boyce et al. 2005; Alvarez-Tabares and Perez-
Martin 2010). Septin filaments in the basidiomycete
dikaryotic hyphae of Cryptococcus neoformans have
also been shown to occasionally colocalize with MTs
(Kozubowski and Heitman 2010). These septins have
roles in morphogenesis and host infection. In the plant
pathogen Magnaporthe oryzae, the location of the

appressorium septum is determined by the site of sep-
tin ring assembly (Saunders et al. 2010). The septin ring
functions as a scaffold for proteins required for appres-
sorium formation (Dagdas et al. 2012). The recent
reports on septins in filamentous fungi have revealed
new roles for these cytoskeletal polymers.

V. The Microtubule Cytoskeleton

MTs play a crucial role during mitosis but serve
also additional functions in interphase in fila-
mentous fungi. They are important for the dis-
tribution of nuclei and other organelles and
serve as tracks for endosomes and other vesi-
cles; thus they are important for rapid hyphal
growth (Xiang and Fischer 2004; Horio and
Oakley 2005; Egan et al. 2012a; Steinberg 2014).

The rather stable minus end of MTs is
located at the MT-organizing center (MTOC),
whereas the plus end is facing to the cell periph-
ery with alternate growing and shrinking phases.
In filamentous fungi, spindle pole bodies (SPBs)
serve as MTOCs (Fig. 2a) (Oakley et al. 1990).
They contain g-tubulin, first discovered in A.
nidulans, which is required for nucleation of
MTs (Oakley and Oakley 1989; Oakley et al.
1990). Furthermore, there is good evidence that
areas close to the septa act as MTOCs in A.
nidulans (sMTOCs) (Fig. 2a) (Veith et al. 2005;
Xiong and Oakley 2009; Zekert and Fischer 2009;
Zhang et al. 2017). The composition of those
MTOCs, their role, and their tethering to the
septal membrane remain to be elusive. However,
there is also good evidence for several MTOCs in
S. pombe, in U. maydis, and in higher eukar-
yotes. In S. pombe equatorial (eMTOC) and
interphase MTOCs (iMTOC) have been
described (Sawin and Tran 2006) but appear to
be only temporally active during certain stages
of the cell cycle, and their exact nature also is
enigmatic. In higher eukaryotes the Golgi appa-
ratus had some MT-forming activity (Sutterlin
and Colanzi 2010).

In the tip compartment of A. nidulans, most
MTs are oriented with their dynamic plus ends
toward the hyphal tip (Fig. 2a, b) (Konzack et al.
2005). There are only a few MTs found in inter-
phase compartments, and nuclei migrate proba-
bly along MTs until they reach a certain
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position. The entire hypha looks therefore very
organized with evenly spaced nuclei.

Two classes of MT-dependent motors, the
minus end-directed dynein and the plus end-
directed kinesins, are involved in positioning of
organelles and transport of membranes.
Whereas genomes of filamentous fungi contain
a single dynein motor, they usually encode 10–
12 kinesins (Schoch et al. 2003). The function of
kinesin-3 and the dynein motor in the transport
of early endosomes have been analyzed deeply
(Fig. 2c) (Steinberg 2011, 2014; Egan et al.
2012a). In A. nidulans hyphae, most MTs
between the hyphal tip and the most proximal
nucleus were polarized with their plus ends
oriented toward the growing hyphal tip. Dynein
and kinesin-3/UncA are the opposite motors
responsible for bidirectional transport of endo-
somes and peroxisomes (Abenza et al. 2009;

Egan et al. 2012b). Studies of A. nidulans
kinesin-3 implicated indirect evidence for the
existence of a subpopulation of detyrosinated
MTs (Zekert and Fischer 2009; Seidel et al.
2012). However, a final proof for the existence
of posttranslationally modified tubulin in fungi
is yet still missing.

Endocytic recycling at subapical regions
supports fungal tip growth. The bidirectional
motility of early endosomes is thought to be
involved in sorting the endocytic cargo to the
subapical vacuole for degradation (Wedlich-
Soldner et al. 2000). An unexpected new role
for early endosome motility was revealed in U.
maydis. The RNA-binding protein Rrm4 trans-
ports various mRNAs on moving early endo-
somes, suggesting that early endosome motility
toward the cell ends supports polar delivery of
Rrm4-bound RNAs (Konig et al. 2009; Bau-

Fig. 2 Microtubule cytoskeleton in A. nidulans. (a)
MT-organizing center (MTOC) at spindle pole bodies
and septa. Most MTs are oriented with their dynamic
plus ends toward the hyphal tip in the tip compartment.

(b) Time lapse of GFP-KipA (MT plus end marker) and
mCherry-TubA (MT) in A. nidulans hyphae. (c) Image
of GFP-RabA (early endosome marker) and mCherry-
TubA (MT) and kymograph of GFP-RabA
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mann et al. 2012). In addition, it was shown that
the mRNA of the septins cdc3 and cdc12 is
actively translated on moving early endosomes,
and both proteins bind to early endosomes
(Baumann et al. 2014). In fact, it was confirmed
that ribosomes attach to early endosomes and
are translationally active during the transport
(Higuchi et al. 2014). It is suggested that bidi-
rectional early endosome motility constantly
stirs the translation machinery, which diffuses
passively in the cytoplasm and thereby contri-
butes to distribute the ribosomes throughout
the cell (Steinberg 2014; Haag et al. 2015).
Indeed, endosomal transport of heteromeric
septin complexes along microtubules is crucial
for formation of higher-order structures in U.
maydis (Zander et al. 2016).

The deletion of conventional kinesin (kinesin-1)
decreased the growth rate and caused defects in Spit-
zenkörper stability, protein secretion, and pathogenic-
ity (Lehmler et al. 1997; Seiler et al. 1997, 1999; Requena
et al. 2001; Schuster et al. 2012). These results suggest a
possible conserved role in vesicle transportation simi-
lar to higher eukaryotic cells. High-speed imaging
revealed vesicle transport of chitin synthases (Take-
shita et al. 2015). The frequency of the transport was
clearly decreased in the absence of kinA, kinesin-1 in A.
nidulans. Secretory vesicles are thought to be trans-
ported by kinesin-1 along MTs for long distances
toward hyphal tips in filamentous fungi, although the
localization of the ER and the Golgi close to hyphal tips
raises questions about the function and cargo of
kinesin-1 (Markina-Inarrairaegui et al. 2013; Pinar
et al. 2013). Possibly long-distance transport of secre-
tion vesicles is less important and that actin-dependent
movement is rather sufficient. Indeed, hyphal extension
can occur quite long without functional MTs but is
immediately stopped as soon as the integrity of the
actin cytoskeleton is disturbed (Torralba et al. 1998;
Horio and Oakley 2005). Although the role of MTs
and the different cytoskeletons could be diverse in
different fungi, vesicle movement and delivery to the
tip plasma membrane likely depend on the cooperation
of actin- and MT-dependent motors (Zhang et al. 2011;
Schuster et al. 2012; Taheri-Talesh et al. 2012).

VI. Cell-End Markers for Polarity
Maintenance

Cell polarity is essential for the proper func-
tioning of many cell types. During cellular mor-

phogenesis—from fission yeast to human
cells—MTs deliver positional information to
the proper site of cortical polarity (Siegrist
and Doe 2007; Li and Gundersen 2008). The
polarization of the actin cytoskeleton and sig-
nal transduction cascades and continuous
membrane transport toward the growth site
depend on MTs.

Because MT dynamics and many MT func-
tions are conserved among eukaryotes, lower
eukaryotes can serve as excellent models. In S.
pombe, the kelch-repeat protein Tea1 is deliv-
ered by growing MTs to the cell ends (Fig. 3a)
(Mata and Nurse 1997). Tea1 reaches the MT
plus end with the kinesin-7, Tea2 (Browning
et al. 2000, 2003), and is anchored at the cell
end membrane through the interaction with the
prenylated protein, Mod5 (Snaith and Sawin
2003). At the cell end, Tea1 interacts with addi-
tional components, which ultimately recruit the
formin For3 (Martin and Chang 2003; Feier-
bach et al. 2004; Tatebe et al. 2008). For3
forms actin cables required for exocytosis and
polarized growth. Cell-end markers, Tea1 and
Mod5, thus transmit positional information
regulated by MTs to the actin cytoskeleton
and thereby contribute to polarized growth.
The cell-end marker genes were identified
after analysis of polarity mutants (T-shaped or
bent cells). The mutants of tea1 and tea2 (tip
elongation aberrant) and mod5 (morphology
defective) exhibit T-shaped or bent cells as a
result of the mislocalization of the polarity site
away from the center of the cell end.

The molecular mechanism of MTs to regu-
late polarity maintenance is principally con-
served from S. pombe to filamentous fungi
(Fig. 3a) (Riquelme et al. 1998; Fischer et al.
2008; Takeshita et al. 2008; Higashitsuji et al.
2009; Takeshita and Fischer 2011). Tea1 and
Tea2 are conserved in A. nidulans as TeaA
(Tea1) and KipA (Tea2), respectively (Konzack
et al. 2005; Takeshita et al. 2008). Although the
Mod5 sequence is not conserved in filamentous
fungi, a functional counterpart, TeaR, was dis-
covered by screening for proteins that harbor a
C-terminal prenylation motif in A. nidulans
(Takeshita et al. 2008). TeaA is conserved in
Ascomycetes and some Basidiomycetes, such as
Cryptococcus neoformans and Puccinia graminis,
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but not in Zygomycetes. TeaR is generally con-
served in Ascomycetes except in Hemiascomy-
cetes. The A. nidulans kipA, teaA, and teaR
mutants show defects in polarity maintenance,
which leads to curved (DkipA orDteaR) or zigzag
growing hyphae (DteaA) (Fig. 3b). The two cell-
end markers, TeaA and TeaR, localize at hyphal
tips interdependently (Fig. 3c). TeaA is delivered
to hyphal tips by growing MTs (Takeshita and
Fischer 2011) and anchored to the hyphal tip
cortex though the interaction with TeaR (Take-
shita et al. 2008). TeaA, along with TeaC, recruits
the formin, SepA, to the growth zone (Higashit-
suji et al. 2009). The conserved mechanism of
“cell-end markers,” TeaA and TeaR, to transmit
positional information from MTs to the actin

cytoskeleton is required for maintenance of
polarity and the growth direction of hyphae
(Fig. 3d). Although the cell-end marker proteins
appear to be conserved in other filamentous
fungi, it remains to be studied if the roles
assigned to them in A. nidulans are also con-
served. For instance, the MT cytoskeleton is
much more complex in N. crassa.

MTs in A. nidulans are necessary to maintain the polar-
ity at the tip of hyphae through cell-end markers.
Besides this function, MTs have additional functions
in filamentous fungi, such as nuclear distribution and
the movement of vesicles and other organelles; thus
they are important for rapid hyphal growth. In contrast,
MTs in S. pombe are required for polarity maintenance
through cell-end markers but are not necessary for

Fig. 3 Role of cell-end markers in A. nidulans. (a)
Scheme of the function of cell-end markers in S. pombe
and A. nidulans. (b) Differential interference contrast
images of wild type, DteaA, DteaR strains. DteaR strains
exhibited curved hyphae and DteaA strains exhibited
zigzag hyphae. (c) Localization of mRFP1-TeaA and

GFP-TeaR (upper) at the hyphal tips. Bimolecular fluo-
rescence complementation (BiFC) assay of TeaA and
TeaR at the hyphal tip (lower left). Localization of
mRFP1-TeaA at the hyphal tip and MT plus end (lower
right). (d) Scheme of growth direction regulated by cell-
end markers and cell cytoskeletons

50 N. Takeshita and R. Fischer

reinhard.fischer@kit.edu



vesicle trafficking. Actin cables grow toward the grow-
ing cell ends, and Myo52, a myosin V, is responsible for
polarized secretion of vesicles along actin cables and
hence membrane enlargement and secretion of cell
wall-synthesizing enzymes (Montegi et al. 2001; Win
et al. 2001; Mulvihill et al. 2006).

VII. Rho GTPase

The small Rho-type GTPases Cdc42 and Rac1
are key regulators of eukaryotic cell polarity
(Jaffe and Hall 2005; Virag et al. 2007). The
switching between inactive GDP-bound and
active GTP-bound states is controlled by gua-
nine nucleotide exchange factors (GEFs)
(Schmidt and Hall 2002) and GTPase-activating
proteins (GAPs) (Bernards and Settleman
2004). Active GTPases stimulate multiple effec-
tor molecules, such as p21-activated kinases
(PAKs), mitogen-activated protein kinases
(MAPKs), formin, and subunits of the exocyst
complex, which regulate numerous cellular
processes including the rearrangement of the
actin cytoskeleton, targeted vesicle transport,
and exocytosis (Bishop and Hall 2000). In S.
cerevisiae, two positive feedback loops are
thought to contribute to Cdc42 polarization.
One pathway involves recruitment of GEFs
and effector complexes from the cytoplasm in
a cytoskeleton-independent manner (Johnson
et al. 2011). The other one is a vesicle-recycling
feedback loop, where Cdc42 orients actin
cables, which in turn deliver Cdc42 as cargo
on secretory vesicles (Wedlich-Soldner et al.
2003).

In S. cerevisiae and S. pombe, Rac1 orthologs are not
conserved, and Cdc42 alone is necessary and sufficient
to control polarized growth (Adams et al. 1990; Miller
and Johnson 1994). In contrast, filamentous fungi
require both Rho GTPases to regulate their hyphal
growth (Mahlert et al. 2006; Virag et al. 2007; Lichius
et al. 2014). Both Cdc42 and Rac1 share at least one
overlapping function that is required for polarity estab-
lishment. The combination of Dcdc42 with Drac1
appeared synthetically lethal in A. nidulans (Virag
et al. 2007). The cell-end marker deletion strains in A.
nidulans lose the axis of polarity, although the hyphae
still continue polarized tip growth. Although the polar-
ization of Cdc42 and Rac1 by positive feedback loops as
known in S. cerevisiae remains elusive in filamentous

fungi, the Rho GTPases are possibly involved in polar-
ity establishment independently of the cell-end markers
in A. nidulans.

VIII. Cell-End Markers for Polarity
Establishment

MTs and cell-end markers are not essential for
spore germination itself but only for site selec-
tion of germination (Takeshita and Fischer
2011). During conidia germination, TeaA
appeared at growth sites prior to the appear-
ance of a small germination bud, and then MTs
contact the cortex of the tip, while the polarized
MTs likely deliver more TeaA and other pro-
teins to the bud site, enforcing polar growth.
Wild-type spores always germinate at only one
site to form one hypha; in contrast, spores of
DteaA often germinated at two (40%) or three
sites (3%) simultaneously (Fig. 4a). A similar
phenotype of multi-germtube formation was
observed using the MT-destabilizing drug ben-
omyl. It had been shown already that MTs are
not essential for the germination process itself
(Oakley and Morris 1980). TeaA and MTs are
not necessary for the emergence of the germ-
tube but probably rather for restricting germi-
nation to a specific place.

When the spores start germination, they
grow isotropically at first, and then they switch
to polarized growth with new material added to
the tip of an emerging germtube. In A. nidu-
lans, temperature-sensitive swo (swollen cell)
mutants representing genes involved in polar-
ity establishment and polarity maintenance
were isolated (Momany et al. 1999). swoC
(putative pseudouridylate synthase) and swoF
(N-myristoyl transferase) (Shaw et al. 2002) are
required to establish polarity, while swoA (O-
mannosyltransferase) is required to maintain
polarity. Besides that, the terminal phenotype
of Dcdc42Drac1 indicates their functions are
required to establish polarity (Virag et al.
2007). In addition, the morphological abnorm-
alities of mutants involved in endocytosis indi-
cate the importance of endocytosis in polarity
establishment and polarity maintenance (Lee
et al. 2008; Hervas-Aguilar and Penalva 2010;
Shaw et al. 2011).
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Once the first hypha reaches a determinate
length, a second germtube appears on the
spore. This second germination site normally
lies opposite of the first hypha (Harris et al.
1999). The second germtube appeared after
the first septum at the base of the first hypha
was formed. TeaA appeared at the second ger-
mination site, opposite the first hypha, after
septation in the first hypha. In A. nidulans,
MTs are formed from SPBs and from septal
MTOCs (Konzack et al. 2005; Veith et al. 2005;
Xiong and Oakley 2009). MTs emanating from
the septum of the first hypha grew toward the
first germtube as well as in the direction of the
spore and reached the second germination tip
where TeaA localized (Fig. 4b). MTs originating
from the septal MTOCs are thus important for
TeaA delivery and may explain the bipolar ger-
mination pattern (Takeshita and Fischer 2011).

There appears to be two patterns of lateral
branching: branches associated with septa and
random branching. In several fungi including
members of the Saccharomycotina (A. gossypii),
zygomycetes (Basidiobolus ranarum), and basi-
diomycetes (Coprinus species), new branches
emerge adjacent to septa (Trinci 1974). A ran-
dom pattern of branching is observed in A.

nidulans. Although the cell-end markers local-
ize to branching sites prior to branching
emerges, the mechanism of branch site selec-
tion remains largely unknown (Fig. 4c) (Harris
2008).

IX. Cell-End Markers for Polarity
Focusing

The role of MTs in transmitting positional
information through delivery of cell-end mar-
kers to the growth machinery is conserved in
both S. pombe and A. nidulans. A Spitzenkör-
per, however, can only be observed in filamen-
tous fungi but not at cell ends of fission yeast
(Fig. 5a). This difference could be due to differ-
ent growth speeds (Kohli et al. 2008). Another
possible reason is that the cell-end markers
concentrate at the apex of hyphae in A. nidu-
lans, whereas the cell-end markers localize at
multiple sites along cell ends in fission yeast
(Dodgson et al. 2013). The positive feedback
loop defined through the interdependence of
TeaA and TeaR could be important for their
concentration, but not sufficient because this

Fig. 4 Cell-end markers for
polarity establishment. (a) Ger-
mination in wild type, and sev-
eral mutants. (b) Scheme of
second germination site selec-
tion by MTs from septal MTOC
and TeaA. (c) Branching site
selection
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mechanism is conserved in S. pombe as well
(Snaith and Sawin 2003; Takeshita et al. 2008;
Bicho et al. 2010). MTs in A. nidulans elongate
toward the tips and tend to converge in the
apical region (Konzack et al. 2005), which is
not observed in S. pombe. The central position
of TeaA at the tip correlated with the conver-
gence of the MT plus ends to a single point. In
the absence of TeaA, MTs often contacted the
membrane off the center of the apex (Fig. 5b)
(Takeshita et al. 2008, 2013).

A recent study showed that a functional
connection between TeaA and theMT polymer-
ase AlpA is required for proper regulation of
MT growth at hyphal tips (Takeshita et al.
2013). AlpA is a member of the XMAP215/
Dis1 family whose conserved TOG domains,
which contain multiple HEAT repeats, are

known to bind tubulin from yeast to human
(Al-Bassam et al. 2007). XMAP215 from Xeno-
pus laevis catalyzes the addition of tubulin
dimers to the growing plus ends (Brouhard
et al. 2008; Al-Bassam and Chang 2011). A.
nidulans AlpA decorates MT filaments and
accumulates at MT plus ends (Enke et al.
2007). Deletion of alpA resulted in a drastic
reduction of the MT array and dynamics. MT
in vitro polymerization assays with purified
tubulin from porcine brains and recombinant
AlpA have revealed the activity of AlpA as a MT
polymerase (Fig. 5c) (Takeshita et al. 2013). The
MT growth speed in vitro was comparable with
that of XMAP215 of X. laevis and approxi-
mately fourfold higher than that of Alp14, the
orthologue in S. pombe (Brouhard et al. 2008;
Al-Bassam et al. 2012). The rate of MT

Fig. 5 Cell-end markers for polarity focusing. (a) Com-
parison of the localization of cell-end markers and the
growth machinery in S. pombe and A. nidulans. (b)
Behavior of MTs at hyphal tips in A. nidulans wild type
and DteaA strains. (c) In vitro MT polymerization assay.

Images of a seed MT (red) with a dynamic MT lattice
growing from the plus end (green). Kymographs of MTs
in the absence of AlpA (right) and presence of 100 nM
AlpA (lower). (d) Scheme of the interaction between
TeaA at the hyphal tip cortex and AlpA at MT plus ends
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polymerization in vivo in A. nidulans leading
hyphae is approximately threefold higher than
in S. pombe, consistent with the ratio in vitro
(Drummond and Cross 2000; Efimov et al.
2006). However, AlpA-dependent MT growth
speed in vitro was approximately only half of
the one determined in vivo (6 mm/min com-
pared to 13 ! 3 mm/min). Therefore, other
microtubule plus-end-tracking proteins are
likely to enhance the AlpA activity for MT
growth in vivo.

As a difference to S. pombe, A. nidulans
TeaA is involved in the convergence of MT
plus ends at the tip apex, suggesting specific
interactions of the MT plus end with the cortex.
One possibility is an interaction between TeaA
and AlpA (Takeshita et al. 2013). MT polymeri-
zation assays in vitro showed that TeaA
increased the catastrophe frequency of MTs in
the presence of AlpA, and TeaA reduced the
in vitro AlpA activity significantly. From these
results it was concluded that AlpA promotes
MT growth at MT plus ends until MTs reach
the hyphal tip, where TeaA blocks the AlpA
activity and induces MT catastrophe (Fig. 5d).
The interdependence of TeaA and MTs could
act as a positive feedback loop to concentrate
TeaA at the apex resulting in well-focused vesi-
cle secretion for the organization of the Spit-
zenkörper (Bartnicki-Garcia et al. 1995;
Riquelme et al. 2014).

X. Transient Polarity Marker
Assembly

The membrane-associated cell-end marker
TeaR is highly dynamic at growing hyphal tips
(Ishitsuka et al. 2015). A MT grows toward the
hyphal tip, pauses in close contact with the
apical membrane, and then undergoes a catas-
trophe event resulting in retraction. TeaR accu-
mulates at the hyphal tip membrane and then
decreases immediately after a MT plus-end
touches the tip membrane and starts to shrink.
Colocalization studies indicate that TeaR clus-
ters represent zones of exocytosis at the apical
membrane. In general, membrane-binding
polarity markers are delivered to the plasma

membrane by vesicle transport and exocytosis.
After exocytosis, vesicles fuse with the plasma
membrane, leading to its extension. Simulation
analysis had predicted that membrane inser-
tion by active exocytosis would dilute and/or
disperse membrane-binding polarity markers
during fast hyphal growth (Savage et al. 2012).
There was no clear answer to the question of
how cell polarity is maintained during inces-
sant vesicle exocytosis, especially for rapidly
growing systems such as filamentous fungi.
One of the problems to capture the complex
process is that conventional live cell imaging
methods lack the resolution.

The localization of TeaR cluster at hyphal
tips has been analyzed by super-resolution
microscopy PALM (photoactivation localiza-
tion microscopy) (Ishitsuka et al. 2015). The
resolution of conventional light microscopy
techniques is limited to about 250 nm due to
light diffraction. Super-resolution microscopy
techniques, such as PALM, have overcome the
diffraction limit, resulting in lateral image res-
olution as high as 20 nm and providing a pow-
erful tool for the investigation of protein
localization in high detail (Sahl and Moerner
2013). The PALM imaging analysis revealed
that TeaR transiently assembles (approximately
120 nm, 20 TeaR proteins per cluster on aver-
age) at the hyphal tip membrane and disperses
along the membrane after exocytosis, which
inserts a new membrane that results in local
membrane extension (Fig. 6a) (Ishitsuka et al.
2015).

These findings gave rise to a “transient
polarity assembly model” to explain how fungal
tip cells extend through repeated cycles of TeaR
assembly/disassembly, actin polymerization,
and exocytosis rather than by constant elonga-
tion (Fig. 6b) (Takeshita 2016). The findings of
colocalization studies support the notion that
TeaR clusters represent zones of exocytosis and
are prerequisite for apical membrane exten-
sion. In this model, the interaction between
the MT plus end, where TeaA is located, and
TeaR at the apical membrane initiates the
recruitment of other polarity markers, resulting
in the assembly of TeaR polarity site. The accu-
mulated cell-end markers induce actin poly-
merization followed by active exocytosis.
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Newly synthesized TeaR is delivered to the tip
membrane on secretory vesicles through MT
and actin cables. The plasma membrane extends
locally at the site of vesicle fusion, and, subse-
quently, the TeaR polarity site is dispersed or
displaced along the membrane. Once the polar-
ity site is disassembled, however, nextMT comes
to the tip and gathers TeaR floating in the mem-
brane through the interaction with TeaA at the
MT plus end and the cycle starts over.

In line with this model, recent work on N. crassa has
identified bursts of exocytotic events at various sites
within the apical membrane rather than a persistent
exocytosis site (Riquelme et al. 2014). Mathematical
simulation analysis confirmed the validity of the tran-
sient polarity assembly model (Ishitsuka et al. 2015).
The simultaneous visualization of actin cables and MTs
suggests temporally and spatially coordinated polymer-
ization and depolymerization between the two cytoske-
letons (Bergs et al. 2016). Interaction between MigA, a
MT plus-end localizing protein, and a class V myosin
suggests that an active mechanism captures MTs and
pulls the ends along actin filaments (Manck et al. 2015).
These results also support the model.

XI. Oscillatory Fungal Cell Growth

Many dynamic cellular processes that appear
continuous are driven by underlying mechan-
isms that oscillate with distinct periods. For
example, eukaryotic cells do not grow continu-
ously but rather by pulsed extension of the
periphery. Stepwise cell extension at the hyphal
tips of several filamentous fungi was discovered
20 years ago (Lopez-Franco et al. 1994), but
only a few molecular details of the mechanism
have been clarified since then. The “transient
polarity assembly model” also implies the step-
wise cell extension. Indeed, the time-lapse
PALM imaging revealed that the cell extension
rate of hyphae is not constant but varies in an
oscillatory manner (Fig. 6c) (Zhou et al. 2018).

In addition, a recent study has provided
evidence for molecular mechanism of oscilla-
tory fungal cell growth. Live cell imaging
analyses revealed oscillations of actin assembly
and exocytosis in growing hyphal tips (Take-
shita et al. 2017). Intracellular Ca2+ levels are

known to regulate actin assembly and vesicle
fusion (Janmey 1994; Schneggenburger and
Neher 2005). Ca2+ levels also pulsed at the
hyphal tips (Kim et al. 2012). The fluores-
cence-based Ca2+ biosensor R-GECO varies
the emission according to Ca2+ concentrations
and has enabled the visualization of pulsatile
Ca2+ concentrations in growing hyphal tips of
A. nidulans (Takeshita et al. 2017). Intracellular
Ca2+ levels pulse at ~30-second intervals. These
positively and temporally correlate with
amounts of F-actin and secretory vesicles at
hyphal tips. Orthologues of Ca2+ channels at
the plasma membrane in A. nidulans are
required for proper tip growth and the oscilla-
tion of F-actin, secretory vesicles, and Ca2+

level pulses (Wang et al. 2012; Takeshita et al.
2017). These results suggest that pulsed Ca2+

influx coordinates the temporally controlled
actin polymerization and exocytosis that drive
stepwise cell extension (Fig. 6b). The oscillatory
fungal growth could be important for dynamic
responses to external and internal signals in
chemotropism, cell-cell fusion, microbial inter-
action, and the fungal penetration of plant and
animal cells (Takeshita 2018).

XII. Conclusion

The establishment and maintenance of cell
polarity in fungi—as in higher eukaryotes—
require the interplay between the actin and
MT cytoskeletons and landmark proteins at
the cortex (Siegrist and Doe 2007; Li and Gun-
dersen 2008). This rather complex arrangement
of components may be necessary to guarantee
robust polar growth. Coordinated oscillations
of actin polymerization, exocytosis, and Ca2+

levels associated with cell growth seem to be a
conserved phenomenon shared among various
organisms, including fungi (Das et al. 2012),
mammalian cells (Wollman and Meyer 2012),
and plant root hairs (Monshausen et al. 2008)
and pollen tubes (Kroeger and Geitmann 2012).
The oscillatory cell growth allows cells to
respond more quickly and often to internal
and external cues such as chemical or mechan-
ical environmental signals.
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