
interest expressed under the regulatable alcA promoter; contains pyroA)
(48), yielding pNT77. The AscI-PacI–digested chsB sequence was replaced
with the teaR sequence in pNT65 (for mEosFPthermo tagging at N terminus
of proteins of interest expressed under the regulatable alcA promoter;
contains pyr-4) (22), yielding pNT75. The plasmids were transformed into the
TN02A3 strain (49). Transformants were screened microscopically for fluo-
rescence and confirmed by PCR for correct integration of the constructs. The
plasmids and primers used in this study are listed in Tables S2 and S3.

Fluorescence Microscopy. Cells were grown in eight-well glass-bottom slides
(Ibidi) with minimal medium at 28 °C overnight. Images were captured using
an Axiophot microscope using a Plan-Apochromatic 63× 1.4 Oil objective
lens, the ZEISS AxioCam MRM camera (Zeiss), and the HBO 103 mercury arc
lamp (Osram) or HXP 120 (Zeiss), featuring faster wavelength switching.
Images were collected and analyzed by using the Zen system (Zeiss) and
ImageJ software. Photobleaching corrections were not applied to the data.

Super-Resolution Microscopy. PALM images were acquired at room temper-
ature on a modified inverted microscope (Axiovert 200, Zeiss) as described
previously (22). The fluorescent proteins were converted from their green to
red emitting forms using a 405-nm laser (Stradus 405-250, Vortran Laser
Technology) with an intensity of 0–50 W/cm2. Fluorescence was excited by a
561-nm laser (Gem 561, Laser Quantum) with simultaneous 405-nm illumi-
nation (200–400 W/cm2). PALM images were analyzed with custom-written
analysis software, a-livePALM (50) running under the MATLAB R2015b (The
Mathworks) environment.
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Fig. S1. Stepwise growth of hyphae. (A) Kymograph of the growing hypha along the growth axis (Left) and enhanced image (Right). Total 60 min. (Scale bar,
Left, 10 μm.) (B) The length of the interval traveled by the hyphal apex along the line in overlay of cell profiles from a series of six PALM images expressing
hypha (Fig. 1E). Larger extensions of the apical membrane were indicated by arrows. (Scale bar, 300 nm.) (C) Cross-correlation between GFP-TpmA and
mCherry-ChsB. To account for the effect of photobleaching during imaging (3 min), the baseline of each signal was defined as a line with negative slope, based
on the average value of first and second half of the signal. The cross-correlation was then calculated based on the corrected signal. (D) Fluorescence intensity of
secretory vesicles (red) along the apex of the growing hypha between dotted lines in (Fig. 1G). The length of the interval traveled by the hyphal apex was
measured every 20 s. (E) The position of Spitzenkörper was aligned every 3 s from Movie S3.
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Fig. S2. Intracellular Ca2+ level by R-GECO. (A) Scheme of the Ca2+ biosensor, R-GECO. (B) Fluorescence image sequence of R-GECO. The elapsed time is given
in seconds. (Scale bar, 5 μm.) (C) The time-lapse signal intensity of R-GECO at different points from the tip shown in B. (D) Fluorescence image sequence of
R-GECO in the three hyphae. Arrows indicate hypha showing the R-GECO signal with different timing. The elapsed time is given in seconds. (Scale bar, 10 μm.)
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Fig. S3. Effect of CaCl2 on the oscillation of R-GECO. (A and B) Fluorescence image of R-GECO in the hypha growing in the media without CaCl2 (A) and 1 μM
CaCl2 + 10 mM EGTA (B). (Scale bars, 10 μm.) Kymographs (Lower) along the hyphae. Total 240 s, every 2 s. (Scale bars, 1 μm.) (C, Upper) Hyphal morphology of
the cchA-deletion strain. (Scale bar, 20 μm.) (Lower) Colonies of wild-type, midA-deletion and cchA-deletion strain grown on the minimal media plate for 3 d.
(D and E) Fluorescence image of R-GECO and GFP-TpmA, in the cchA-deletion hyphae growing in the media with 1 μM CaCl2 (D), and in the wild-type hypha
growing in the media with 10 mM CaCl2 (E). (Scale bars, 5 μm.) (Lower) Kymographs along the hypha. Total 240 s, every 2 s. (Scale bars, 1 μm.) (F) Fluorescence
image of R-GECO and GFP-TpmA in the wild-type hypha growing in the media with 1 μM CaCl2 after the treatment of calcium ionophore A23187 (Sigma)
5 μg/mL for 30 min. (Scale bars, 5 μm.)

Table S1. Aspergillus nidulans strains used in this study

Strain Genotype Source

TN02A3 pyrG89; argB2; ΔnkuA::argB; pyroA4 Nayak et al. (49)
SNT147 pyrG89; argB2; ΔnkuA::argB; pyroA4; [alcA(p)-gfp-tpmA::pyr-4] Bergs et al. (18)
CIA08 pyrG89; riboB2; argB2; ΔnkuA::argB; pyroA4; [ΔmidA::pyrG] Wang et al. (40)
WSA05 pyrG89; riboB2; argB2; ΔnkuA::argB; pyroA4; [ΔcchA::pyrG] Wang et al. (40)
SNG10 pyrG89; argB2; ΔnkuA::argB; pyroA4; [bglA-gfp::pyr-4] Present study
SNT167 pyrG89; argB2; ΔnkuA::argB; pyroA4; [alcA(p)-mEeosthermofp-chsB::pyr-4] Present study
SNT161 pyrG89; argB2; ΔnkuA::argB; pyroA4; [alcA(p)-gfp-tpmA::pyr-4] ; [alcA(p)-mcherry-

chsB::pyroA]
Present study

SNT162 pyrG89; argB2; ΔnkuA::argB; pyroA4 ; [alcA(p)-R-GECO::pyr-4] Present study
SNT163 pyrG89; argB2; ΔnkuA::argB; pyroA4; [pyroA] [alcA(p)-gfp-tpmA::pyr-4] ; [alcA(p)-

R-GECO::pyr-4]
Present study

SNT164 pyrG89; argB2; ΔnkuA::argB; pyroA4; [pyroA] [bglA-gfp::pyr-4] ; [alcA(p)-R-
GECO::pyr-4]

Present study

SNT165 pyrG89; riboB2; argB2; ΔnkuA::argB; pyroA4; [ΔmidA::pyrG]; [pyroA]; [alcA(p)-
gfp-tpmA::pyr-4]; [alcA(p)-R-GECO::pyr-4]

Present study

SNT166 pyrG89; riboB2; argB2; ΔnkuA::argB; pyroA4; [ΔcchA::pyrG]; [pyroA]; [alcA(p)-
gfp-tpmA::pyr-4]; [alcA(p)-R-GECO::pyr-4]

Present study

Table S2. Plasmids used in this study

Plasmid Description Source

pPD60 RGECO.1 Zhao et al. (35)
pNT77 alcA(p)-mcherry-chsB::pyroA Present study
pNG3 bglA-gfp::pyr-4 Present study
pNT76 alcA(p)-R-GECO::pyr-4 Present study
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Table S3. Primers used in this study

Primer Sequence (5′ → 3′)

RGECO-KpnI-fw gcggtaccATGGTCGACTCATCACGTCG

RGECO-XbaI-r gctctagaCTACTTCGCTGTCATCATTTG

BglA_P1 GCGGTGACGGACAACTG

BglA_P2 CAAGACCGCGTCTGAGTCTAC

BglA_P3 tggccgcgttggccAGAGGAAGCTTGCGTGAGG

BglA_P5 GACGGACATGCATGCTAGCAC

BglA_P6 GCATACAGAGGAAACACGCT

chsB_AscI_fwd cggcgcgcctATGGCCTACCACGGCTC

chsB_PacI_rev cttaattaattaGGCAACACACTGACATATCC

Movie S1. Image sequences of the DIC A. nidulans wild-type hyphae growing in the minimal media at 28 °C; every 10 s, total 1,800 s. (Scale bar, 10 μm.) See
Fig. 1A.

Movie S1

Movie S2. Image sequences of GFP-TpmA and mCherry-ChsB; every 2 s, total 180 s. (Scale bar, 2 μm.) See Fig. 1F.

Movie S2
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Movie S3. Image sequences of DIC and CHS-1- GFP in Neurospora crassa; every 2 s, total 600 s. (Scale bar, 10 μm.) See Fig. 2A.

Movie S3

Movie S4. Image sequences of R-GECO; every 1 s, total 120 s. (Scale bar, 5 μm.) See Fig. 2B.

Movie S4

Movie S5. Image sequences of GFP-TpmA and R-GECO; every 2 s, total 180 s. (Scale bar, 2 μm.) See Fig. 3E.

Movie S5
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Movie S6. Image sequences of BglA-GFP and R-GECO; every 2 s, total 180 s. (Scale bar, 2 μm.) See Fig. 3H.

Movie S6
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