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Abstract
Cell wall formation and maintenance are crucial for hyphal morphogenesis. In many fila-

mentous fungi, chitin is one of the main structural components of the cell wall. Aspergillus
nidulans ChsB, a chitin synthase, and CsmA, a chitin synthase with a myosin motor-like do-

main (MMD) at its N-terminus, both localize predominantly at the hyphal tip regions and at

forming septa. ChsB and CsmA play crucial roles in polarized hyphal growth in A. nidulans.
In this study, we investigated the mechanism by which CsmA and ChsB accumulate at the

hyphal tip in living hyphae. Deletion of kinA, a gene encoding conventional kinesin (kinesin-

1), impaired the localization of GFP-CsmA and GFP-ChsB at the hyphal tips. The transport

frequency of GFP-CsmA and GFP-ChsB in both anterograde and retrograde direction ap-

peared lower in the kinA-deletion strain compared to wild type, although the velocities of the

movements were comparable. Co-localization of GFP-ChsB and GFP-CsmA with mRFP1-

KinArigor, a KinA mutant that binds to microtubules but does not move along them, was ob-

served in the posterior of the hyphal tip regions. KinA co-immunoprecipitated with ChsB and

CsmA. Co-localization and association of CsmA with KinA did not depend on the MMD.

These findings indicate that ChsB and CsmA are transported along microtubules to the sub-

apical region by KinA.

Introduction
Hyphae of filamentous fungi represent extremely polarized cells. Since “polarized growth” is a
general growth mechanism common in the elongation of cells as distinct as neurons or pollen
tubes, as well as in the differentiation of embryos [1], the mechanism of hyphal tip growth in
filamentous fungi may provide a helpful basic model. This mechanism is thought to be highly
elaborate and is supported by the continuous delivery of vesicles containing proteins required
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for polarized growth to the hyphal tips [2,3]. In some filamentous fungi, vesicles delivered to
hyphal tips accumulate at apices prior to fusion with the membrane. These clusters of vesicles
are called Spitzenkörper or apical bodies [4]. The Spitzenkörper is thought to act as a vesicle
supply center, the place where cargo for the hyphal apex is sorted [5]. In the ascomycete fila-
mentous fungus Aspergillus nidulans, some proteins involved in polarized growth are trans-
ported along microtubules and the actin cytoskeleton to the hyphal tips [6–9]. While there are
5~8 linear microtubules that extend to the hyphal tips in A. nidulans, actin cables are formed
preferentially at the apical hyphal regions. The vesicles containing components of the tip
growth machineries are thought to be transported along microtubules from posterior parts of
hyphal tip regions to their apical regions, transferred to actin cables and delivered to the apical
cortices of hyphae [10–12].

The cell surface of filamentous fungi is covered with a cell wall that consists mainly of chitin
and glucan. Chitin is a β-1,4-linked homopolymer of N-acetylglucosamine and its synthesis is
important for hyphal morphogenesis [13]. To date, fungal chitin synthases have been classified
into seven classes and three divisions according to their structural characteristics [14]. In this
report, we follow the classification proposed by Chigira et al. and Choquer et al. [15,16]. Fungal
chitin synthases are membrane-bound proteins containing several transmembrane regions.
Class I, II, and III chitin synthases belong to division I and class IV, V, and VI belong to divi-
sion II. We previously isolated six chitin synthase genes from A. nidulans: chsA, chsB, chsC,
chsD, csmA, and csmB; the products of these genes belong to classes II, III, I, IV, V, and VI, re-
spectively [17–21](S1 Fig). The class V and VI chitin synthases, CsmA and CsmB, respectively,
consist of a C-terminal chitin synthase domain (CSD) containing the amino acid sequences
conserved in chitin synthases of other classes [22], and an N-terminal myosin motor-like do-
main (MMD). Myosins are motor proteins that move along actin filaments. In our previous
studies, both csmA- and csmB-deletion mutations caused similar phenotypic abnormalities
(e.g., formation of balloons and intrahyphal hyphae, and hyphal lysis especially under low os-
motic conditions) [20,23], and these mutations were synthetically lethal [20]. The chsB-dele-
tion mutant formed extremely small colonies and did not form conidiospores [24]. CsmA,
CsmB, and ChsB localized near actin structures at the hyphal tips and at forming septa
[20,24,25]. The MMDs of CsmA and CsmB bound to actin filaments in vitro [20,25] and the
interaction between each MMD and actin was crucial for their proper localization and function
[25,26]. However, the MMD of CsmB is not functionally equivalent to that of CsmA [27].

The orthologous genes encoding classes III, V, and VI chitin synthases have been isolated
from filamentous fungi and some dimorphic yeasts, and their functions have been investigated
[28–39]. The results obtained from these investigations indicate that the chitin synthases be-
longing to classes III, V, and VI play important roles in hyphal tip growth, maintenance of cell
wall integrity, and pathogenicity.

Since the genomes of the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, and
a dimorphic yeast Candida albicans do not possess classes III, V, and VI chitin synthases, the
chitin synthases in these classes likely play critical roles in polarized growth, especially in fila-
mentous fungi. In order to understand the dynamic aspects of polarized hyphal growth, it is
necessary to clarify their transport and localization mechanisms in the hyphae.

Kinesins are motor proteins that move on microtubules in the plus end direction and are di-
vided into 15 families according to their structural properties [40]. In these families, kinesin-1,
kinesin-3, and kinesin-7 are involved in polarized growth of filamentous fungi [41]. In A. nidu-
lans, there are 11 kinesin-encoding genes [42]. Among these genes, kinA, uncA, and kipA en-
code kinesins belonging to kinesin-1, kinesin-3, and kinesin-7, respectively. Kinesin-1 is
suggested to function in the transport of secretory vesicles, dyneins, and dynactin, a microtu-
bule minus end-directed motor and its regulator, while Kinesin-3 is suggested to be involved in
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the transport of secretory vesicles, early endosomes, peroxisomes, and mRNPs containing
mRNA [11,43–53]. Zhang et al. [53] and Yao et al. [51] showed that dynein and dynactin local-
ize along microtubules in the ΔkinAmutant, which provide good support for the idea that
KinA transports dynein/dynactin along microtubules to the plus ends.

Although the localization of chitin synthases has already been investigated in some filamen-
tous fungi, their localization mechanisms remain largely unknown. In N. crassa chitin
synthases are thought to be transported on special vesicles called chitosomes [54,55]. In basid-
iomycete dimorphic yeast Ustilago maydis, it was reported that the proper localization of class
V chitin synthase Msc1 depends on the presence of microtubules and/or actins, that its trans-
port along microtubules does not depend on its MMD, and that the MMD is required for the
tethering of Mcs1 at the hyphal tips to increase the efficiency of its exocytosis [36,50]. In this
study, we report the transporting mechanisms of classes III and V chitin synthases, ChsB and
CsmA, to hyphal tips in A. nidulans and the role of the MMD of CsmA in the transport
process.

Materials and Methods

Strains, media, and bacterial and fungal transformations
The A. nidulans strains used in this study are listed in Table 1. Complete medium, YGuu medi-
um (0.5% yeast extract, 1% glucose, 0.1% trace elements, uracil at 1.12 mg/ml, and uridine at
2.44 mg/ml) and minimal medium (MMGuu), minimal medium containing 2% glycerol
(MMGlyuu), or minimal medium containing 100 mM threonine and 0.1% fructose instead of
glucose (MMTFuu) for A. nidulans were used [56,57]. YGuu, MMGuu, and MMTFuu plates
contained 1.5% agar. MMGuu and MMTFuu were supplemented with arginine at 0.2 μg/ml,
biotin at 0.02 μg/ml, p-aminobenzoic acid at 1 μg/ml, and pyridoxine at 0.5 μg/ml, when neces-
sary. Bacterial and fungal transformations were performed as described previously [57–59].

Constructions of plasmids and A. nidulans strains
To create the strains that produced CsmA with an EGFP tag at its N-terminus, we constructed
the plasmid pMAEC as follows: The 0.8-kb KpnI-PstI fragment of pM-ALC2 [25] was cloned
into the KpnI-PstI site of pUC19, yielding pUCCSM2. The 0.7-kb fragment encoding EGFP
was amplified by PCR from pEGFP (Clontech) using primers 50-GCGTTAACATGGTGAG
CAAGGGCGAGG-30 and 50-GCCCATGGTCTTGTACAGCTCGTCCAT-30, in which the un-
derlined letters representHincII and NcoI recognition sites, respectively, digested withHincII
and NcoI, and cloned into the NcoI site of pUCCSM2, yielding pUCCSM. The 1.5-kb KpnI-PstI
fragment of pUCCSM was cloned into the KpnI-PstI sites of pM-ALC2, yielding pMAEC. The
4.1-kb EcoRI and PstI fragment of pMAEC was used for the transformation of the ABPU1 and
SNR1 (ΔkinA) strains (Table 1). Two transformants obtained from each strain, in which the
DNA fragment encoding EGFP was integrated into the 50-region of the csmA cording region,
were selected and confirmed by Southern blot analysis using the 1.0-kb SpeI-XhoI fragment of
pM-ALK-CHS5 [23] as a probe, and were designated as EGFP-CsmA1 and 2, and EGFP-Cs-
mAΔkinA1 and 2, respectively (Table 1).

To obtain the strains that produced EGFP-CsmA in an uncA deletion mutant, a 4.0-kb frag-
ment amplified from pNZ13 [48] using primers UncA-LB-fwd (50-CGTCGATGGAAGGCA
TATACTACTCGC-30) and UncA-RB-rev (50-CATCCACGTCCCCATAACTAATACCACC-
30) was used for the transformation of EGFP-CsmA1. Two transformants in which uncA was
replaced with pyroA were selected and designated as EGFP-CsmAΔuncA1 and 2.

EB-5 (chsB(p)-egfp-chsB) [24] was crossed with SNZ9 (ΔuncA) [48], selected and designated
as EGFP-ChsBΔuncA1 and 2. SNR1 (ΔkinA) was transformed with the BglII fragment of
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pEB-argB [24]. Two transformants in which chsB(p)-egfp-chsB was integrated into the argB
locus were selected and designated as EGFP-ChsBΔkinA1 and 2.

Table 1. A. nidulans strains used in this study.

Strain Genotype Source

ABPU1 biA1 pyrG89 argB2 pyroA4 wA3 [19]

A1149 pyrG89 pyroA4 ΔnkuA::argB FGSC*

CsmA-HA/FLAG-ChsB1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::csmA-9xHA-pyrG ΔargB::argB-chsB(p)-3xFLAG-chsB This
study

EGFP-CsmA1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-egfp-csmA This
study

EB-5 biA1 pyrG89 argB2 pyroA4 wA3 ΔchsB::pyr4-alcA(p)-chsB ΔargB::argB-chsB(p)-egfp-chsB [24]

SNR1 ΔargB::trpΔB ΔkinA::pyr4 pyrG89 pyroA4 yA2 [45]

SNZ9 pyrG89 argB2 ΔnkuA::argB pyroA4 ΔuncA::pyroA [48]

EGFP-CsmAΔkinA1, 2 ΔargB::trpCΔB ΔkinA::pyr4 pyrG89 pyroA4 yA2 ΔcsmA::argB-alcA(p)-egfp-csmA This
study

EGFP-CsmAΔuncA1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-egfp-csmA ΔuncA::pyroA This
study

EGFP-ChsBΔkinA1, 2 ΔargB::trpCΔB ΔkinA::pyr4 pyrG89 pyroA4 yA2 ΔargB::argB-chsB(p)-egfp-chsB This
study

EGFP-ChsBΔuncA1, 2 argB2 pyroA4 wA3 ΔargB::argB-chsB(p)-egfp-chsB ΔuncA::pyroA This
study

EGFP-CsmA/mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-egfp-csmA ΔkinA::pyroA-alcA(p)-mrfp-
kinArigor

This
study

EGFP-ChsB/mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔchsB::pyr4-alcA(p)-chsB ΔargB::argB-chsB(p)-egfp-chsB ΔkinA::
pyroA-alcA(p)-mrfp-kinArigor

This
study

ABPU1/mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔkinA::pyroA-alcA(p)-mrfp-kinArigor This
study

CA2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::csmA-9xHA-pyrG [61]

FB-3 biA1 pyrG89 argB2 pyroA4 wA3 ΔchsB::pyr4-alcA(p)-chsB ΔargB::argB-chsB(p)-3XFLAG-chsB [24]

CsmA-HA/mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::csmA-9HA-pyrG ΔkinA::pyroA-alcA(p)-mrfp-kinArigor This
study

FLAG-ChsB/ mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔchsB::pyr4-alcA(p)-chsB ΔargB::argB-chsB(p)-3XFLAG-chsB
ΔkinA::pyroA-alcA(p)-mrfp-kinArigor

This
study

EGFP-ΔMA1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-egfp-csmA(Δ1–860) This
study

EGFP-ΔMA/ mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-egfp-csmA(Δ1–860) ΔkinA::pyroA-alcA(p)-
mrfp-kinArigor

This
study

CΔMHA biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-csmA(Δ1–860)-9xHA-pyrG [25]

D10HA biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-csmA(Δ347–356)-9xHA-pyrG [25]

CΔMHA/ mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-csmA(Δ1–860)-9xHA-pyrG ΔkinA::pyroA-alcA
(p)-mrfp-kinArigor

This
study

D10HA/ mRFP-KinArigor1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::argB-alcA(p)-csmA(Δ347–356)-9xHA-pyrG ΔkinA::pyroA-
alcA(p)-mrfp-kinArigor

This
study

ABPU1/GFP-KinA1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔkinA::pyroA-alcA(p)-gfp-kinA This
study

CsmA-HA/GFP-KinA1, 2 biA1 pyrG89 argB2 pyroA4 wA3 ΔkinA::pyroA-alcA(p)-gfp-kinA ΔcsmA::pyrG-csmA-9HA This
study

CsmA-HA/FLAG-ChsB/
mRFP-KinArigor1, 2

biA1 pyrG89 argB2 pyroA4 wA3 ΔcsmA::csmA-9xHA-pyrG argB::chsB(p)-3xFLAG-chsB ΔkinA::
pyroA4-alcA(p)-mrfp-kinArigor

This
study

*: Fungal Genetics Stock Center, Kansas City, Missouri

doi:10.1371/journal.pone.0125937.t001
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The strains that produced CsmA without its MMD (ΔMA) tagged with EGFP at its N-ter-
minus under the control of the alcA promoter were constructed as follows: The 4.2-kb frag-
ment containing the csmA promoter, argB, the alcA promoter, and the coding region of EGFP
was amplified with AP1 (50-ATAGTAACAGGTCAGGGTAT-30) and 3-DMA-EGFP (50-
AGTTGTGAAACATATCGCCCCTTGTACAGCTCGTCCATGC-30) as primers using
pMAEC as a template and the 1.0-kb fragment encoding the CSD of CsmA (861 a.a.) was am-
plified from pMAEC using 5-EGFP-DMA (50-GCATGGACGAGCTGTACAAGGGGCGA
TATGTTTCACAACT-30) and 3-DMA (50-CACATGGCCGACAATGAACA-30) as primers.
The amplified 4.2-kb and 1.0-kb fragments were fused by double-joint PCR [60] and the ob-
tained fragment designated as EGFP-ΔMA was used for transformation. Two transformants in
which a single copy of the EGFP-ΔMA producing fragment was integrated into the csmA locus
were selected by Southern blot analysis using the same strategy as in the case of EGFP-CsmA1,
and were designated EGFP-ΔMA1 and 2. The strains that produced KinArigor tagged with
mRFP at their N-termini were obtained as follows: EGFP-CsmA1, EB-5, ABPU1, CA2, FB-3
[24,61], EGFP-ΔMA1, CΔMHA, and D10HA [25] were transformed with the 5.1-kb EcoRI-
BglII fragment of pCS5-NZ [48]. The transformants in which the wild-type kinA was replaced
with alcA(p)-mrfp-kinArigor were selected and designated as EGFP-CsmA/mRFP-KinArigor1
and 2, EGFP-ChsB/mRFP-KinArigor1 and 2, ABPU1/mRFP-KinArigor1 and 2, CsmA-HA/
mRFP-KinArigor1 and 2, FLAG-ChsB/mRFPKinArigor1 and 2, EGFP-ΔMA/mRFP-KinArigor1
and 2, CΔMHA/mRFP-KinArigor1 and 2, D10HA/mRFP-KinArigor1 and 2, respectively
(Table 1). The strains that produced CsmA tagged with 9xHA at its C-terminus and ChsB
tagged with 3xFLAG at its N-terminus were obtained by the transformation of CA2 with pFB-
argB [24] and were designated as CsmA-HA/FLAG-ChsB1 and 2 (Table 1). CsmA-HA/
FLAG-ChsB1 was transformed with the 5.1-kb EcoRI-BglII fragment, and the transformants in
which the wild-type kinA was replaced with alcA(p)-mrfp-kinArigor were designated as
CsmA-HA/FLAG-ChsB/mRFPKinArigor1 and 2. To obtain the strain that produce KinA
tagged with GFP at its N-terminus, the ABPU1 strain was transformed with the 5.1-kb EcoRI-
BglII fragment of pCS2-NZ [48]. Two transformants in which the transformed fragment was
integrated into the kinA locus were selected and designated as ABPU1/GFP-KinA1 and 2.
ABPU1/GFP-KinA1 was transformed with the 3.0-kb BglII-EcoRI fragment of pHA9 [61].
Two transformants in which the fragment was integrated into the csmA locus were selected
and designated as CsmA-HA/GFP-KinA1 and 2.

We obtained at least two transformants in each case after the confirmation of their relevant
DNA structures by Southern blot analysis. They exhibited the same phenotypes with respect to
growth and hyphal morphology. We used one of them for further experiments.

Light/fluorescence microscopy
Live-cell imaging of germlings and young hyphae: cells were grown on cover slips in 0.5 ml
MMGly (de-repression of the alcA promoter) were used. Although GFP-ChsB was expressed
under the native promoter, to compare the data of GFP-CsmA, which was expressed under the
alcA promoter, MMGly was selected. Cells were incubated at 30°C overnight or 1 day. The
cover slips were mounted on a microscope slide. Tempcontrol mini (Pepcon) was used as need-
ed to control the temperature of the specimens during microscopy. Images were captured
using an Axiophot microscope using a Planapochromatic 63 times oil immersion objective
lens, the Zeiss AxioCamMRM camera (Zeiss, Jena, Germany), and the HBO103 mercury arc
lamp (Osram) or HXP 120 (Zeiss, Jena, Germany) possessing faster speed wavelength switch-
ing. Images were collected and analyzed using the AxioVision and Zen system (Zeiss). Kymo-
graphs were made using ImageJ software (http://rsb.info.nih.gov/ij/) and Zen system (Zeiss).
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Other methods
Western blot analysis was performed as described previously [62] with slight modifications.
Cell lysates were prepared as follows: Conidia were inoculated in MMTFuu liquid medium and
incubated for 14–16 h. The mycelia were frozen with liquid nitrogen and broken by grinding.
The cell lysates were fractionated as described previously [24,61]. 10,000 x g pellet (P10) and
the 100,000 x g pellet (P100) were suspended with 100 μl of TNE buffer (20 mM Tris-HCl pH
7.4, 150 mMNaCl, 2 mM EDTA) and then 500 μl of IP buffer (0.1% Triton X-100, 100 mM
NaCl, 10 mM EDTA, 50 mM Tris-HCl pH 7.4) and 2 μl of Protease Inhibitor Cocktail (Sigma)
were added. Co-immunoprecipitation of CsmA-HA, FLAG-ChsB, ΔM-HA, and d10-HA were
performed as described previously [25] using the P10 and P100 fractions. mRFP-KinArigor

was detected using a rabbit anti-DsRed-monomer (mDsRed) polyclonal antibody (Cat. No.
632496, Clontech), which recognizes mRFP, at a 1:1,000 dilution and an anti-rabbit immuno-
globulin G (IgG), horseradish peroxidase-linked antibody (A0545, Sigma) at a 1:1,000 dilution.
Twenty μg proteins were loaded on SDS-PAGE for the detection of proteins tagged with EGFP
or mRFP.

Results

Localization of ChsB and CsmA
In previous work chitin synthase class III ChsB, expressed from the native promoter and fused
to GFP, was observed at hyphal tips and forming septa in A. nidulans [24]. Here we analyzed
the localization mechanism for ChsB and the class V chitin synthase CsmA (S1 Fig). To analyze
the dynamic localization of CsmA in living hyphae, we replaced the csmA gene with a C-termi-
nally GFP tagged version (CsmA-GFP). These strains, however, exhibited phenotypic abnor-
malities similar to those observed in csmA-deletion mutants and only weak fluorescence of
CsmA-GFP (data not shown). This suggested that the GFP tag at the C-terminus interferes
with the function of CsmA. Thus, we constructed a strain expressing CsmA tagged with GFP at
its N-terminus (GFP-CsmA) under the control of the alcA promoter (Table 1). This strain
grew well and did not exhibit phenotypic abnormalities when the alcA promoter was dere-
pressed (medium containing glycerol as a carbon source) or when the alcA promoter was in-
duced (medium containing threonine and fructose as carbon sources). The correct insertion of
the construct in two strains expressing GFP-CsmA (EGFP-CsmA1 and 2) was confirmed by
Southern blot analysis (S2 Fig). The production of the GFP-CsmA protein was confirmed by
Western blot analysis using anti-GFP antibodies (S3A Fig).

Fluorescence of GFP-CsmA was observed at hyphal tips and at forming septa in addition as
moving spots in the cytoplasm (Fig 1A, and data not shown). At the apical membrane,
GFP-CsmA was found at the Spitzenkörper and/or as a crescent along the apical membrane
(Fig 1B, S1 and S2 Movies). Likewise, GFP-ChsB was observed at hyphal tips and forming
septa [24]. However GFP-ChsB was found mainly at the Spitzenkörper at the hyphal tips
under this condition (Fig 1C, S3 Movie).

Role of kinesin-1 (KinA) and kinesin-3 (UncA) for the localization of
ChsB and CsmA
To investigate the roles of kinesins, KinA (kinesin-1) and UncA (kinesin-3), for the localization
and transportation of ChsB and CsmA, we constructed strains expressing GFP-ChsB or
GFP-CsmA in kinA- or uncA-deletion backgrounds, respectively. The production of
GFP-ChsB and GFP-CsmA were confirmed by Western blot analysis using anti-GFP antibod-
ies (S3A and S3B Fig).
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Typical localization patterns of GFP-ChsB or GFP-CsmA in the ΔkinA or ΔuncA are shown
in Fig 2A and 2C. In the absence of KinA, both GFP-ChsB and GFP-CsmA showed large accu-
mulations at subapical regions (Fig 2A and 2C). The profiles of GFP signal intensities along hy-
phae are shown in Fig 2B and 2D. In wild type hyphae, the maximum peaks of GFP-ChsB and
GFP-CsmA were restricted sharply at the tip of hyphae. In contrast, the hyphae in kinA-dele-
tion strains displayed wider peaks of GFP-ChsB and GFP-CsmA at approximately 1 μm behind
the tip of hyphae. In the uncA-deletion strains, GFP-ChsB and GFP-CsmA localized at the
apex of hyphal tips as in wild type stains (Fig 2A and 2C). However GFP-ChsB and GFP-CsmA
appeared to be less diffused behind the apex. In addition, multiple punctate structures were ob-
served along the hyphae. In the profiles of GFP signal intensities, several small peaks were
often observed throughout the hyphae in the uncA-deletion strains (Fig 2B and 2D).

Role of KinA and UncA in the transportation of ChsB and CsmA
We investigated the roles of kinesins, KinA and UncA, in the transportation of ChsB and
CsmA. To visualize the transportation events of GFP-ChsB and GFP-CsmA, kymographs were
recorded at hyphal tips in wild type, the kinA-deletion, and the uncA-deletion strains (Fig 3)

Fig 1. Localization of GFP-CsmA. (A) Strain EGFP-CsmA1 was grown in MMGlyuu overnight. GFP-CsmA was observed at the hyphal tips and forming
septa (arrow). (B) GFP-CsmA was found at the Spitzenkörper (left) and/or as a crescent along apical membrane (right). (C) The strain producing GFP-ChsB
(EB-5) was grown in MMGlyuu overnight. GFP-ChsB was found mainly at the Spitzenkörper at the hyphal tips. Scale bars represent 5 μm (A) and 2 μm (B,C).

doi:10.1371/journal.pone.0125937.g001
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(S4–S9 Movies). The signals forming vertical lines in the kymographs represent immobile ac-
cumulations of GFP-ChsB (Fig 3A) and GFP-CsmA (Fig 3B). With the used microscopy setup
it is impossible to detect single GFP molecules. The transport events shown in the kymographs
are thought to represent events that multiple GFP-ChsB or GFP-CsmAmolecules are trans-
ported together. It is not defined here whether the spots represent secretory vesicles, chito-
somes, or early endosomes.

Transport frequency of ChsB and CsmA
The transport frequency of GFP-ChsB and GFP-CsmA in both anterograde and retrograde di-
rection appeared higher in the wild type than in the kinA- or the uncA-deletion strains. To
compare the transport frequencies, the transport events were quantified from the kymographs
(Fig 4). In addition, the velocity of GFP spots was calculated from the kymographs and com-
pared between wild type and the kinesin-deletion strains (Fig 5).

Fig 2. Localization of GFP-ChsB and GFP-CsmA in kinesin-deletion strains. (A, C) The typical localization patterns of GFP-ChsB (A) and GFP-CsmA
(C) in wild type (EB-5 and EGFP-CsmA1, respectively), ΔkinA (EGFP-ChsBΔkinA1 and EGFP-CsmAΔkinA1, respectively), and ΔuncA (EGFP-ChsBΔunkA1
and EGFP-CsmAΔunkA1, respectively) strains grown in MMGlyuu overnight. Scale bars represent 5 μm. (B, D) Signal intensity profiles of GFP-ChsB (B) and
GFP-CsmA (D) along hyphae in wild type (blue line), ΔkinA (red line), and ΔuncA (green line) strains.

doi:10.1371/journal.pone.0125937.g002

Class III and V Chs in Aspergillus nidulans

PLOSONE | DOI:10.1371/journal.pone.0125937 May 8, 2015 8 / 21



Fig 3. Kymographs GFP-ChsB and GFP-CsmA in kinesin-deletion strains. (A) Kymographs of
GFP-ChsB in the wild type, ΔkinA, and ΔuncA strains. (B) Kymographs of GFP-CsmA in wild type, ΔkinA, and
ΔuncA strains. The kymographs were derived at hyphal tips (30 μm from the tips) from a 1 minute movie (200
ms intervals, total 300 frames). Horizontal scale bars represent 5 μm. Vertical scale bars represent 5
seconds. Anterograde movements are represented by green and retrograde movements are represented by
red lines.

doi:10.1371/journal.pone.0125937.g003
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In wild type the frequency of anterograde and retrograde movements visualized by
GFP-ChsB were 6.1 ± 1.8 and 7.5 ± 2.7 (mean ± S.D., n = 82 and 100) events per minute, re-
spectively. In the kinA-deletion strain those (the frequencies of GFP-ChsB anterograde and ret-
rograde movements) were reduced to 2.1 ± 3.1 and 2.3 ± 2.9 (mean ± S.D., n = 38 and 47)
events per minute, respectively. In the uncA-deletion strain the frequencies were also reduced
to 2.6 ± 1.4 and 3.7 ± 1.9 (mean ± S.D., n = 42 and 58) events per minute, respectively. The fre-
quencies of transports visualized by GFP-ChsB in the kinA-deletion and the uncA-deletion
strains were both significantly lower than those in wild type in anterograde (34% in ΔkinA and
46% in ΔuncA) and retrograde direction (31% in ΔkinA and 48% in ΔuncA) (Figs 3 and 4A).

In wild type the frequencies of GFP-CsmA anterograde and retrograde movements were
5.7 ± 1.3 and 5.2 ± 1.6 (mean ± S.D., n = 100 each) events per minute, respectively. In the
kinA-deletion strain those (the frequencies of GFP-CsmA anterograde and retrograde move-
ments) were significantly reduced to 0.8 ± 0.8 and 1.2 ± 1.1 (mean ± S.D., n = 40 and 45) events

Fig 4. Transport frequency of GFP-ChsB and GFP-CsmA in kinesin-deletion strains. (A) The frequency
of anterograde (blue) and retrograde (red) movements of GFP-ChsB (left) and GFP-CsmA (right) in the wild
type, ΔkinA, and ΔuncA strains. Anterograde and retrograde movements were visualized in the kymographs.
The numbers of motion events per minute are shown (mean ± S.D). **, P < 0.05 (statistically significant
difference); ***, P < 0.001 (highly significant difference), compared to wild type strain. The p values were
calculated by unpaired t-test. (B-E) Distribution diagrams of GFP-ChsB anterograde (B) and retrograde (C)
events, and GFP-CsmA anterograde (D) and retrograde (E) events in each 5 μm-segment from hyphal tips in
the wild type (blue line), ΔkinA (red line), and ΔuncA (green line) strains.

doi:10.1371/journal.pone.0125937.g004
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per minute, respectively. In the uncA-deletion strain the frequencies of GFP-CsmA antero-
grade and retrograde movement were reduced to 2.2 ± 1.8 and 2.1 ± 1.9 (mean ± S.D., n = 40
and 50) events per minute, respectively. Both frequencies of moving spots visualized by
GFP-CsmA in the kinA-deletion and the uncA-deletion strains were significantly lower than
those in wild type in both anterograde (15% in ΔkinA, 39% in ΔuncA) and retrograde (23% in
ΔkinA, 40% in ΔuncA) direction (Figs 3 and 4A). Generally, the frequencies of GFP-ChsB
movement were relatively higher than those of GFP-CsmA. The difference might represent dif-
ferent expression levels of GFP-ChsB and GFP-CsmA.

To analyze the distribution of transport events along the hyphae, the hyphae were divided
into 5 μm-segments starting from hyphal tips and the frequencies of the movements of
GFP-ChsB and GFP-CsmA were quantified in each segment in each strain (Fig 4B–4E). In
cases where movements of GFP-ChsB and GFP-CsmA were observed in longer distances than
5 μm, they were counted in multiple segments. The frequencies of GFP-ChsB and GFP-CsmA
in both anterograde and retrograde movements in the kinA-deletion strain were lower than
those of the wild type strain. Especially in the region close to the tips (0–15 μm), movements of
GFP-ChsB and GFP-CsmA were hardly observed in both anterograde and retrograde

Fig 5. Velocity of GFP-ChsB and GFP-CsmA in kinesin-deletion strains. (A) The velocities of
anterograde (blue) and retrograde (red) movements of GFP-ChsB (left) and GFP-CsmA (right) in wild type,
ΔkinA, and ΔuncA strains are shown (mean ± S.E). NS, no significant difference; **, P < 0.05 (statistically
significant difference); ***, P < 0.001 (highly significant difference), compared to wild type strain. The p
values were calculated by unpaired t-test. (B-E) Distribution of velocities in the GFP-ChsB anterograde (B)
and retrograde movements (C) and in the GFP-CsmA anterograde (D) and retrograde movements (E) are
shown in wild type (blue line), ΔkinA (red line), and ΔuncA (green line) strains.

doi:10.1371/journal.pone.0125937.g005
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directions. The frequencies of GFP-ChsB and GFP-CsmA in both anterograde and retrograde
direction in the uncA-deletion strain were also lower than those of the wild type strain along
the hyphae, in contrast, especially behind the tip region (20–30 μm).

Transport speed of ChsB and CsmA
Although the frequency of GFP-ChsB and GFP-CsmA movements decreased in the kinA- and
uncA-deletion strains, the velocities of the movements were comparable (Fig 5A). In wild type
the velocities of GFP-ChsB anterograde and retrograde movements were 1.6 ± 0.1 and 1.7 ± 0.1
(μm/sec., mean ± S.E., n = 82 and 100), respectively. In the kinA-deletion strain those were
1.6 ± 0.1 and 1.5 ± 0.1 (μm/sec., mean ± S.E., n = 38 and 47), respectively, and 1.5 ± 0.1 and
1.5 ± 0.1 (μm/sec., mean ± S.E., n = 42 and 58), respectively, in the uncA-deletion strain. There
were no significant differences in the velocities of anterograde movements in the kinesin-dele-
tion strain, whereas the velocities of retrograde movements were slightly reduced (87% in
ΔkinA, 89% in ΔuncA).

In the wild type strain the velocities of GFP-CsmA anterograde and retrograde movement
were 1.6 ± 0.1 and 1.7 ± 0.1 (μm/sec., mean ± S.E., n = 100 each), respectively (Fig 5A). The ve-
locities of GFP-CsmA showed no significant difference compared to the velocities of
GFP-ChsB in both anterograde and retrograde movements, respectively. The velocities of an-
terograde and retrograde movements also showed no significant difference in both GFP-ChsB
and GFP-CsmA. In the kinA-deletion strain the velocities of GFP-CsmA anterograde and ret-
rograde movement were 1.5 ± 0.1 and 1.4 ± 0.1 (μm/sec., mean ± S.E., n = 40 and 45), respec-
tively. In the uncA-deletion strain those were 1.6 ± 0.1 and 1.6 ± 0.1 (μm/sec., mean ± S.E.,
n = 40 and 50), respectively. There were no significant differences in the velocities of antero-
grade movements in the kinesin deletion strains, whereas the velocities of retrograde move-
ments were slightly reduced in the kinA-deletion strain (81%) but not in the uncA-deletion
strain.

The distribution of velocities in the anterograde and retrograde movements of GFP-ChsB
and GFP-CsmA was analyzed in each strain (Fig 5B–5E). Velocities faster than 2 μm/sec were
observed in wild type at all the anterograde and retrograde movements of GFP-ChsB and
GFP-CsmA. However, the high speeds were not clearly found in the kinA-deletion strain. The
average speed of early endosomes transport is slower than that of secretory vesicles (unpub-
lished results). The higher speed peaks might indicate those signals derived from secretory
vesicles.

Transport of ChsB and CsmA to the hyphal tips along microtubules by
KinA
To further analyze the function of KinA in the transport of GFP-ChsB and GFP-CsmA, we
constructed strains co-expressing either GFP-ChsB and mRFP-KinArigor (EGFP-ChsB/
mRFP-KinArigor strain), or GFP-CsmA and mRFP-KinArigor (EGFP-CsmA/mRFP-KinArigor

strain). The KinArigor protein, which has a point mutation in its ATPase domain, binds tightly
to microtubules but does not move along them. Consequently, KinArigor decorates microtu-
bules [48]. GFP-ChsB and GFP-CsmA localized to large accumulations at subapical regions
similar to those in kinA-deletion strains. In addition, GFP-ChsB and GFP-CsmA were ob-
served along microtubules decorated with mRFP-KinArigor throughout the hyphae (Fig 6A and
6B). These results suggest that ChsB and CsmA are transported to the hyphal tip regions along
microtubules by KinA.

Only the chitin synthase domain of CsmA without the MMD (GFP-ΔMA) did not show a
clear accumulation at the hyphal tip membrane (data not shown)[25]. When the GFP-ΔMA
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was co-expressed with mRFP-KinArigor in the EGFP-ΔMA/ mRFP-KinArigor1 strain, the GFP-
ΔMA also exhibited a similar localization pattern with GFP-CsmA co-expressed with
mRFP-KinArigor, along microtubules and at subapical large accumulations (Fig 6C), suggesting
that CsmA is transported to the hyphal tip regions by KinA independently of its MMD.

Interaction of ChsB and CsmA with KinA
To further examine the interaction between ChsB and KinArigor, or CsmA and KinArigor in
vivo, we constructed strains co-expressing FLAG-ChsB and mRFP-KinArigor, or CsmA-HA
and mRFP-KinArigor (FLAG-ChsB/mRFP-KinArigor strain or CsmA-HA/mRFP-KinArigor

strain, respectively). The strains were subjected to a fractionation experiment (see Materials
and methods). FLAG-ChsB and CsmA-HA were detected in a 10,000 x g pellet (P10) and in a
100,000 x g pellet (P100) that were obtained by cell fractionation of the crude cell extract of A.
nidulans [24,61]. In S. cerevisiae, P100 fraction contains transport vesicles, endosomal mem-
branes, and Golgi cisternae [63]. FLAG-ChsB and CsmA-HA were co-immunoprecipitated
with mRFP-KinArigor from the P100 fractions of the FLAG-ChsB/mRFP-KinArigor strain and
CsmA-HA/mRFP-KinArigor strain, respectively (Fig 7A and 7C). CsmA-HA was also co-im-
munoprecipitated with wild type KinA from the P100 fraction of the strain expressing
CsmA-HA and GFP-KinA (Fig 7B). These results suggest that transport vesicles containing
ChsB or CsmA are transported through the interaction with KinA. In addition, CsmA without
the MMD (ΔMA) and CsmA truncated mutant protein lacking 10 amino acids from the actin
binding domain of the MMD (D10M) also co-immunoprecipitated with mRFP-KinArigor (S4
Fig)[25], suggesting that the interaction of transport vesicles containing CsmA with KinA is in-
dependent of the MMD.

We examined the interaction between ChsB and CsmA, but we did not detect co-immuno-
precipitation of CsmA-HA or FLAG-ChsB from the P100 fractions of the strains that produce
these tagged proteins together with or without mRFP-KinArigor (FLAG-ChsB/CsmA-HA/
mRFP-KinArigor strain or FLAG-ChsB/CsmA-HA strain, respectively) (data not shown). These
results suggest that ChsB and CsmA are transported on different vesicles by KinA.

Fig 6. Colocalization of GFP-ChsB, GFP-CsmA, and GFP-ΔMAwith mRFP1-KinArigor along
microtubules. (A, B) GFP-ChsB (A) and GFP-CsmA (B) localized to large accumulations at the subapical
tips similar to those in the ΔkinA strains, and were observed along microtubules decorated with
mRFP-KinArigor throughout the hyphae. (C) GFP-ΔMA (CsmA without the MMD) also localized to large
accumulations at the subapical tips and along microtubules decorated with mRFP-KinArigor. (A-C) These
strains were grown in MMGlyuu overnight. Scale bars represent 5 μm.

doi:10.1371/journal.pone.0125937.g006

Class III and V Chs in Aspergillus nidulans

PLOSONE | DOI:10.1371/journal.pone.0125937 May 8, 2015 13 / 21



Discussion
In filamentous fungi, protein machineries required for polarized growth, such as formin and
regulators of polarity establishment, accumulate in the Spitzenkörper at the hyphal tips
[3,5,7,10,12]. Chitin synthases of the classes I, III, and VII of Neurospora crassa (Chs3, Chs1,
and Chs6) also localized at the Spitzenkörper and in subapical regions as punctate structures
[55,64]. In the previous studies, we investigated the localization of class III and V chitin
synthases in A. nidulans, ChsB and CsmA, respectively [24,25]. In this study, we investigated
the transport mechanisms of ChsB and CsmA in living hyphae, especially the roles of kinesin-1

Fig 7. Co-immunoprecipitation of CsmA-HAwith mRFP-KinArigor or GFP-KinA and FLAG-ChsBwith
mRFP-KinArigor in vivo. (A, B) 100,000 xg pellets (P100) of cell extracts of the strains expressing CsmA-HA,
mRFP-KinArigor, or both of them (A), and the strains expressing CsmA-HA, GFP-KinA, or both of them (B)
were immunoprecipitated with anti-HA antibody. P100 (Input) and immunoprecipitates with anti-HA antibody
(IP: α-HA) were subjected to Western blot analysis using antibodies indicated by IB. (C) Those of the strains
expressing FLAG-ChsB or FLAG-ChsB and mRFP-KinArigor were immunoprecipitated with anti-FLAG
antibody and subjected to Western blot analysis.

doi:10.1371/journal.pone.0125937.g007
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(KinA) and kinesin-3 (UncA) in the transportation of ChsB and CsmA. Our results suggest
that these chitin synthases are delivered to hyphal tips along microtubules through the interac-
tion with conventional kinesin (kinesin-1, KinA).

The localizations of GFP-CsmA and GFP-ChsB were disturbed especially around the hyphal
tip region by the kinA deletion (Figs 2–5). In addition these chitin synthases co-immunopre-
cipitated with KinA. These results suggest that KinA transports CsmA and ChsB. Movements
of ChsB and CsmA were hardly observed in kinA-deletion mutants and the number of move-
ments with higher velocities were reduced in the mutants. Since it is suggested that smaller ves-
icles tend to move faster than larger vesicles [65], it is possible that these chitin synthases are
mainly transported on small vesicles, such as secretory vesicles or chitosomes, at extreme hy-
phal tip regions by KinA. However, KinA is required for the transport of cytoplasmic dynein to
the microtubule plus ends [52] and dynein itself is involved in membrane transport such as
early endosomes in several fungi [11,47,66,67]. Since ChsB and CsmA accumulated at subapi-
cal regions of the hyphae in the kinA-deletion mutant and dynein is not transported to those
regions in the kinA-deletion mutants [52], it is also possible that the defects of ChsB and CsmA
transport in the kinA-deletion strains include the direct and/or indirect effect of mislocalization
of dynein.

In U.maydis, Schuster et al. reported that class V chitin synthase Mcs1 was also transported
by kinesin-1 [50]. These results indicate that the transport mechanism of class V chitin
synthases is conserved between ascomycete and basidiomycete fungi. In contrast, the transport
of the class III chitin synthase in N. crassa does not depend strictly on microtubules [64], sug-
gesting that the transport mechanism of class III chitin synthase of A. nidulans is at least par-
tially different from that of another ascomycete N. crassa. Since CsmA-HA and FLAG-ChsB
did not co-immunoprecipitate, they are likely transported in different vesicle populations. In
N. crassa, it is also suggested that classes I, III, and VII chitin synthases are contained in differ-
ent vesicular subpopulations [64]. Thus chitin synthases of different classes are possibly trans-
ported in different vesicle subpopulations.

Kinesin-3, UncA, is involved in the transport of early endosome and peroxisome [11,48,68].
In U.maydis, kinesin-3 is also involved in the transport of early endosomes and the secretion
of acid phosphatase [46,67,69], but is not involved in the transport of Mcs1 [50]. Although the
transports of GFP-ChsB and GFP-CsmA were disturbed to some extent in the uncA-deletion
strain, the localization at hyphal tips appeared nearly normal in the mutants. This suggests that
UncA is involved in the transport of ChsB and CsmA, but not essential especially in hyphal tip
regions. In A. nidulans, actin forms a ring structure at the subapical plasma membrane [70].
Endocytosis is suggested to occur nearby this structure, and the resultant endocytic vesicles
fuse with each other in the cytoplasm to form early endosomes [7,70–73]. The early endosomes
are transported along microtubules by kinesin-3 and dynein in the plus and minus end direc-
tions, respectively, in hyphae of A. nidulans and U.maydis [6,11,46,48,49] and the endosome
system is thought to be involved in the recycling of membrane proteins at hyphal tips [74]. It is
possible that kinesin-3, UncA, is involved in the transport of ChsB and CsmA through the re-
cycling pathway. Alternatively the defects of early endosome transport might affect the trans-
port of ChsB and CsmA indirectly. It is necessary to distinguish secretory vesicles and early
endosomes in same hyphae in order to investigate the dependency of KinA and UncA on
the transport.

It is well known that actin is also crucial for hyphal tip growth and that myosins are motor
proteins that move on actin filaments. A. nidulans contains three genes,myoA,myoB, and
myoE that encode myosin heavy chains belonging to the myosin families, myosin-1, myosin-2,
and myosin-5, respectively [8,9,75]. Moreover, MyoE participates in vesicle transport in hy-
phae [8]. Mutagenesis of both, myosin-5 and kinesin-1 caused severe growth defects in A.
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nidulans and U.maydis [9,69], suggesting that the function of kinesin-1 could be partly substi-
tuted by myosin-5 and vice versa. Since myosin-5 functions in the transport of Mcs1 to the cell
surface in a microtubule-independent manner [50], it is possible that a myosin-5, MyoE, is also
involved in the transport of CsmA and ChsB. This idea is supported by the fact that the inhibi-
tion of actin polymerization by cytochalasin A severely disturbed the localization of these chitin
synthases (data not shown)[25]. The MMDs of class V chitin synthases belong to the myosin-
17 family. The binding of the MMD to actin filaments is required for the proper localization
and function of CsmA [25], whereas no motor activity of the MMD of Mcs1 was detected in
vitro [50]. The point mutation at the P-loop or Switch I in the MMD of CsmA does not affect
its function and localization [25], suggesting that there is no motor activity or at least the
motor activity is not essential for the transport mechanism. The idea is supported by our results
that CsmA and CsmA without the MMD is transported to the hyphal tips by KinA.

If the MMD of CsmA is not necessary for the transport to hyphal tips, the role of MMD re-
mains unrevealed. Schuster et al. suggested that the MMD of Mcs1 functions in the tethering of
vesicles containing Mcs1 near the sites of exocytosis [50]. Our results showed that the deletion
of kinesin-1 or kinesin-3 caused similar effects on the transport of ChsB and CsmA. The role of
MMDmay be important for the localization at hyphal tips after their transportation, rather
than the transport towards hyphal tips. GFP-CsmA was found at the Spitzenkörper and/or as a
crescent along the apical membrane (Fig 1B). In contrast, GFP-ChsB was found mainly at the
Spitzenkörper at hyphal tips (Fig 1C). The difference in the localization between CsmA and
ChsB was also observed in a significant population of hyphal tips by indirect immunofluores-
cence analysis [24,25]. ChsB and CsmA are likely to be transported to the Spitzenkörper in a
similar way. Then, CsmA might be localized and/ or stay at special regions along the apical
membrane depending on the interaction of MMD with the actin cytoskeleton.

Supporting Information
S1 Fig. Phylogenetic tree of fungal chitin synthases. Alignment was done with the clustalW
alignment program using the entire amino acid sequence of each chitin synthase. The tree was
drawn using Njplot. Branch length indicates evolutionary distance. Chitin synthases belong to
class III and V are shown in red and blue, respectively. Abbreviations: Nc, N. crassa; Sc, S. cere-
visiae; Um, U.maydis.
(TIF)

S2 Fig. Construction of GFP-CsmA producing strains. (A) Strategy for constructing
GFP-CsmA producing strains. (B) Southern blot analysis of EcoRV digested total DNAs of the
EGFP-CsmA strains using the 1.0 kb SpeI-XhoI fragment of pM-ALK-CHS5 [23] as a probe.
Lane 1, ABPU1; lane 2, EGFP-CsmA1; lane 3, EGFP-CsmA2.
(TIF)

S3 Fig. Western blot analysis of the cell lysates of EGFP-CsmA or EGFP-ChsB producing
strains. (A) GFP-CsmA in the cell lysates of the EGFP-CsmA1 (WT), EGFP-CsmA/ΔkinA1
strain (ΔkinA), and EGFP-CsmA/ΔuncA1 (ΔuncA) strains were detected with anti-GFP anti-
body. (B) EGFP-ChsB in the cell lysates of the EB-5 strain (WT), EGFP-ChsB/ΔkinA1
(ΔkinA), and EGFP-ChsB/ΔuncA1 (ΔuncA) strains were detected using the same antibody.
P10, 10,000 x g pellet; P100, 100,000 x g pellet; S100, 100,000 x g supernatant.
(TIF)

S4 Fig. Co-immunoprecipitation of ΔMA-HA with mRFP-KinArigor and D10M-HA with
mRFP-KinArigor. P100 fractions of the CΔMHA strain or the CΔMHA/mRFP-KinArigor1
strain (A), and the D10HA strain or the D10HA/mRFP-KinArigor1 strain (B) were
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immunoprecipitated with anti-HA antibody and subjected to Western blot analysis.
(TIF)

S1 Movie. GFP-CsmA localized at Spitzenkörper (400 ms interval, total 30 seconds, Scale
bar 2 μm).
(AVI)

S2 Movie. GFP-CsmA localized as a crescent along apical membrane (500 ms interval, total
28 seconds, Scale bar 2 μm).
(AVI)

S3 Movie. GFP-ChsB localized at Spitzenkörper (200 ms interval, total 30 seconds, Scale
bar 2 μm).
(AVI)

S4 Movie. GFP-ChsB in wild type strain (200 ms interval, total 60 seconds, Scale bar 5 μm).
(AVI)

S5 Movie. GFP-CsmA in wild type strain (200 ms interval, total 60 seconds, Scale bar
5 μm).
(AVI)

S6 Movie. GFP-ChsB in ΔkinA strain (200 ms interval, total 60 seconds, Scale bar 5 μm).
(AVI)

S7 Movie. GFP-CsmA in ΔkinA strain (500 ms interval, total 60 seconds, Scale bar 5 μm).
(AVI)

S8 Movie. GFP-ChsB in ΔuncA strain (200 ms interval, total 60 seconds, Scale bar 5 μm).
(AVI)

S9 Movie. GFP-CsmA in ΔuncA strain (200 ms interval, total 60 seconds, Scale bar 5 μm).
(AVI)
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