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Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In
the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively
known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual de-
velopment, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative
cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the
predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 up-
regulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was con-
firmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary
metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belong-
ing to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expres-
sion changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite produc-
tion, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities
were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development.
These results provide a blueprint for further stage-specific gene expression studies during conidiophore development.

Public availability of hundreds of fungal genome sequences, as
well as the advent of high-throughput proteomic and tran-

scriptomic methods, has allowed the acquisition of genome-scale
data and the characterization of transcripts and proteins which
have no designated function (1, 2).

In the genus Aspergillus, which includes model organisms as
well as industrially and medically important species, proteomic
studies have focused mainly on two-dimensional PAGE (2D-
PAGE) coupled to tandem mass spectrometry (MS-MS), gaining
valuable insight into the composition of the proteome under dif-
ferent growth and stress conditions (3). The main transcriptomic
approach to the development, stress response, or secondary me-
tabolite production of aspergilli has involved microarray analyses
(see, for example, references 4–6, and 7). RNA sequencing (RNA-
seq) (8) technology allows a deeper and more reproducible anal-
ysis of gene expression and regulation with a higher sensitivity
than microarray analysis (8–10). It has been successfully used to
elucidate transcriptomes of microbes and higher eukaryotes (see
references within reference 11). Thus, this powerful technique
arises as an efficient tool for transcriptomic analyses in the genus
Aspergillus, as shown in 2010 by Wang and coworkers (11), who
published the first RNA-seq-based transcriptomic study of this
genus. In these last 2 years, the RNA-seq-based studies involving
Aspergillus species analyzed the temperature effect on secondary
metabolite synthesis, biofilm formation, the response to lignocel-
lulose, or domestication in A. fumigatus, A. flavus, A. niger, or A.
oryzae, respectively (11–15).

Aspergillus nidulans is the reference organism in the study of
fungal asexual development, also known as conidiation or conid-
iophore development (16–19). The required morphological
changes during conidiophore formation (Fig. 1) (20) are induced
by environmental signals and arise from nonspecialized cells
called vegetative hyphae. Conidiophore development starts with

the formation of the foot cell, which has a thick cell wall. Then, a
branch emerges from the foot cell and elongates through apical
extension displaying negative geotropism, thus forming the stalk.
This is followed by a swelling process of the stalk tip to form the
vesicle. Then, a massive multipolar budding process at the dome
of the vesicle generates a layer of approximately 60 primary sterig-
mata or metulae, followed by their respective apical budding to
generate 120 secondary sterigmata or phialides. The vesicle, metu-
lae, phialides, and conidia are separated by septa, the production
of which is regulated by conidiophore-nonspecific and -specific
bud site markers (see, for example, references 21 and 22). Finally,
each phialide produces, via basipetal cell divisions, long chains of
more than 100 asexual propagules called conidia (Fig. 1).

The morphological changes described above are programmed
at the genetic level. For practical purposes, initial works divided
the process into two genetic stages (16). Stage one included factors
involved in the perception of environmental changes, transduc-
tion of these signals, and the launching of the initial morphoge-
netic transformations leading to vesicle formation. These are the
upstream developmental activators (UDA) (17). Loss-of-function
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mutations in these genes yield a “fluffy” aconidial phenotype that
is manifested as cotton-like masses of vegetative cells and the ab-
sence of cell differentiation (23). From the genetic point of view,
the fluffy phenotype of UDA mutants is associated with the inabil-
ity to induce the second stage, characterized by the control exerted
by the C2H2-type transcription factor (TF) brlA, the first conidi-
ation-specific TF (24). BrlA and downstream factors of the central
developmental pathway of conidiation (CDP), such as AbaA and
WetA (25, 26), regulate the spatiotemporal morphological trans-
formations leading to spore formation.

In this simplified genetic model, the handover of control be-
tween UDA and CDP pathways is not addressed. The requirement
of additional proteins other than those reported in early asexual
transformations is, in addition, highly feasible. With the aim of
identifying the genes and determining the cellular processes sig-
nificantly altered during this transition, we used in this work a
RNA-seq approach to compare the transcriptomes of submerged
19 h-old vegetative hyphae (nonspecialized cells) and 5 h-old air-
exposed samples (in which asexual structures started to develop).
The first time point was chosen based, on one hand, on the acqui-
sition of the developmental competence, which is required to de-
velop conidiophores (16) and, on the other hand, because this was
the reference time point for the vegetative stage in our previous
works (27, 28). The second time point was chosen based on the
expression peak of UDA coding genes, which coincide with a re-
markable induction of brlA and the CDP pathway (17). We found
that exposure of hyphae to the air provokes a reorganization of
primary metabolic pathways, a restructuring of the cell wall, and a
repression of polar growth as well as sexual development. In ad-
dition, expression of transcripts predictably involved in redox bal-
ance, transmembrane transport, and transcriptional regulation is
strongly affected, some of them being grouped in metabolic clus-
ters together with polyketide synthases or nonribosomal peptide
synthetases. Taken together, this work shows that asexual devel-
opmental induction involves the simultaneous activation or re-
pression of specific pathways and cellular processes.

MATERIALS AND METHODS
Fungal strains and culture conditions. As a reference A. nidulans strain,
we used MAD2666 (kindly provided by Ane Markina-Iñarrairaegui), an
isogenic strain of TN02A3 (29), where the pyrG89 mutation was elimi-
nated by gene replacement using a wild-type (WT) fragment of the pyrG
gene. Vegetative cell samples were obtained by culturing 106 spores/ml in
liquid minimal medium (MMA) with the appropriate supplements (30)
for 19 h. Filtered mycelia were processed for RNA extraction.

Induction of asexual development was conducted as described previ-

ously (31, 32). Briefly, after 19 h of culture in liquid MMA as described
above, mycelia were filtered using nitrocellulose membranes (0.45 �m,
MicronSep; GE Water and Process Technologies). These membranes
were placed on solid minimal medium, and mycelia were cultured for 5 h
before being collected and processed for RNA extraction. Two biological
replicates were processed for each culture condition.

RNA isolation, mRNA library construction, and Illumina sequenc-
ing. Mycelium samples (100 mg [dry weight]) were frozen in liquid nitro-
gen, and total RNA extraction from these samples was performed accord-
ing to the Invitrogen protocol based on TRIzol reagent using 1 ml of
TRIreagent (Fluka) per sample. Isolated total RNA samples were then
further purified using the Qiagen RNeasy minikit, following the manu-
facturer’s instructions. The concentration and integrity of total RNA were
checked using a Nanodrop instrument (Thermo Scientific) and/or a Bio-
analyzer 2100 system (Agilent Technologies).

mRNA libraries were prepared from A. nidulans total RNA samples
following Illumina standard protocols (Ilumina, San Diego, CA). Briefly,
each total RNA sample (20 to 50 �g) was treated with DNase and enriched
for mRNA using oligo(dT) tags. Samples of poly(A) RNA (0.2 to 1 �g)
were fragmented into smaller pieces (200 to 500 bp; mean for all libraries
is approximately 280 bp) and used to synthesize cDNA. The cDNA library
construction involved end repair, A tailing, adapter ligation, and library
amplification, followed by cluster generation and sequencing. Sequencing
was performed in a pair-end-read, 2� 76-base mode on a GAIIx se-
quencer (Illumina, San Diego, CA), running four samples per lane (mul-
tiplexing).

Demultiplexing, mapping, assembling and quantifying sequencing
data. Sequences were demultiplexed using the software program by Brian
J. Knaus, freely accessible from his web page (http://brianknaus.com/).
They are 75 nucleotides (nt) in length, since the barcodes have been re-
moved or trimmed.

Read quality was checked using the fastQC software program, and
only reads with quality values higher than Q30 were introduced for map-
ping. All reads were mapped using the software program Bowtie 2.0.0-
beta5 (http://bowtie-bio.sourceforge.net/index.shtml), using parameters
by default, which allow two mismatches per read. The version s07-m02-
r07 of the Aspergillus Genome Database (http://www.aspergillusgenome
.org/) provided the annotated genome of Aspergillus nidulans, which was
used as the template for mapping.

Differential expression. The volume and complexity of data from
RNA-seq experiments demand mathematical analysis software. TopHat
and Cuffdiff are open-source software tools for gene discovery and com-
prehensive expression analysis of high-throughput RNA sequencing data.
The Cuffdiff program (http://cufflinks.cbcb.umd.edu/index.html) was
used in order to detect genes differentially expressed between different
samples. To associate with predicted genes, we used the fasta file pro-
vided by the Aspergillus Genome Database as the reference for the gtf
file from previous mapping steps. As input files, we used the prefor-
matted mapping files obtained after running the software program

FIG 1 Morphogenetic transformations leading to conidium production: Time after induction of conidiophore development is indicated (in hours).
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TopHat V1.4.1 (http://tophat.cbcb.umd.edu/). We followed the pro-
tocol described by Trapnell and collaborators (33).

Cuffdiff learns how read counts vary for each gene across the replicates
and uses these variance estimates to calculate the significance of observed
changes in expression. Cuffdiff calculates the P value (the uncorrected P
value of the test statistic) and q value (the FDR-adjusted P value of the test
statistic). The significance depends on whether P is greater than the false
discovery rate (FDR) after a Benjamini-Hochberg correction for multiple
testing (in our case, q values between 0 and 0.5 indicate significant
changes).

Data visualization. We used an R software application called Cumme-
Rbund to visualize the results of the RNA-seq analysis. This R program
converts the different output files from TopHat or Cufflinks into a related
database (CuffData.db) in order to obtain customized graphs.

Gene ontology analysis. Gene ontology (GO) terms for each A. nidulans
gene were obtained from the Aspergillus genome database (http://www.aspgd
.org/download/go/gene_association.aspgd.gz) and were related with terms
downloaded from OBO (http://www.geneontology.org/ontology/obo
_format_1_2/gene_ontology_ext.obo). The Gene Ontology (GO) project
provided a standardized set of terms describing the molecular functions of
genes. We used the topGO software package from the Bioconductor project
(http://www.bioconductor.org/packages/release/bioc/html/topGO.html) to
identify overrepresented GO terms from a set of differentially expressed
genes. The Python programming language (http://www.python.org/) was
used to prepare the data, utilizing rpy2 (http://rpy.sourceforge.net/rpy2
.html) to call R for the statistical analysis.

Nucleotide sequence accession number. Our Illumina sequence
reads have been submitted to the NCBI Sequence Read Archive (SRA)
with the accession number SRR623029.

RESULTS AND DISCUSSION
Summary of the RNA-seq data set. To identify genes that might
be involved in the induction of asexual development and obtain a
broad view on the associated cellular processes, total RNA samples
from submerged 19-h-old vegetative hyphae (VG) and 5-h-old
air-exposed (asexual development induction [AD]) hyphae were
subjected to high-throughput Illumina sequencing. We obtained
an average of 8,566,985 reads of 72 bp per sample (34,267,942
reads, for all 4 samples), representing nearly 20 A. nidulans ge-
nome lengths per sample (�82 genome lengths with all 4 sam-
ples). Two biological replicates showed a high level of correlation
(r � 0.909 for VG and r � 0,839 for AD; see Fig. S1 in the supple-
mental material).

RNA-seq analysis revealed that almost the whole set of genes
carried in the A. nidulans genome is expressed during vegetative or
early asexual stages. Of the 10,943 transcripts predicted by the
Aspergillus Genome Database, 9,763 (89.2%) were expressed dur-
ing VG and 10,059 (91.9%) during early AD (see Table S1 in the
supplemental material). Ten thousand one hundred ninety-two
genes were expressed under one or both conditions, and 751 genes
were not expressed under either condition. Of the 10,192 ex-
pressed genes, 429 were uniquely expressed during VG and 113
genes at the early AD. Of the remaining 9,650 genes that were
found to be expressed under both conditions, 2,222 showed a
significant differential expression, of which 187 were upregulated
(higher transcript levels in asexual than in vegetative samples) and
2,035 were downregulated (Fig. 2B; see also Table S2). The num-
ber of genes with a significant expression difference (2,222) is
considerably higher than that described in early works on A. ni-
dulans conidiation (34). It was estimated that 45 to 150 loci con-
tributed specifically to spore production, while contributions by
Timberlake and collaborators increased this number and sug-

gested that approximately 1,200 unique mRNAs accumulated
preferentially during conidiation (35, 36). Tables 1 and 2 show the
top 20 genes with the highest significant increase (upregulated) or
decrease (downregulated) in expression levels upon induction of
conidiation, respectively. In order to obtain an overview of the
process, an envisaged functional analysis of the top 20 genes is
presented in the next section together with the rest of the signifi-
cantly regulated transcripts.

We also analyzed the distribution of significantly regulated
genes along the A. nidulans chromosomes and confirmed that
there was not any obvious genomic region enriched in them (Fig.
2C). However, chromosome III contained a significant increase in
downregulated genes compared to the rest of the chromosomes,
with a ratio (down- versus upregulated genes) of 22.6 in compar-
ison to an average of 10.9. In contrast, chromosome VII contained
the highest proportion of upregulated genes, with a down- versus
upregulated ratio of 7.7.

Functional analysis of early asexual development. To obtain
a comprehensive picture of the pathways and cellular processes
switched on/off as the initial stages of asexual development pro-
ceeded, we divided the list of 2,222 genes with significant altered
expression (see Table S2 in the supplemental material) into two
groups. On one hand, we studied those genes having a standard
name, which meant that they were previously functionally anno-
tated (274 genes; 12.3%). On the other hand, we analyzed those
containing only a systematic name and not characterized to date
(1,948 genes; 87.6%).

From the 274 genes in the first group, 236 (86.1%) showed
lower expression levels after the induction than in VG (downregu-
lated; log2 fold change [FC] � 0), while 38 (13.9%) showed higher
expression at the AD (upregulated; log2 FC � 0). This is clearly in
agreement with the Volcano graph shown in Fig. 2B.

Using the Aspergillus Genome Database (www.aspgd.org)
and previously published works, we extracted all the available
information on the function, localization, genetic pathway,
and/or cellular process in which those genes in the first group
are described or predicted to participate. This information is
available in Table S3 in the supplemental material. Genes were
grouped according to their participation in different cellular pro-
cesses. Genes encoding putative cytochrome P450s were included
in a separated group called “Electron transfer and energy metab-
olism.” Some genes were included in more than one group, since
they have been described to participate in several cellular pro-
cesses. Figure 3 shows how these cellular processes are repre-
sented, as well as the proportions of downregulated (green) and
upregulated (red) genes. Genes predicted to code for proteins with
miscellaneous functions are listed in the group called “Unknown/
Other” (see Table S3). The most represented processes are “Pri-
mary carbon and nitrogen metabolism,” with 76 genes, 67 down-
and 9 upregulated (76: 67 � 9), “Stress response” (37: 34 � 3),
“Hyphal morphogenesis” (25: 24 � 1), “Conidiation” (27: 21 �
6), “Cell wall organization and biogenesis” (19: 10 � 9), “Second-
ary metabolism” (17: 13 � 4), “Nucleic acid assembly, organiza-
tion, and integrity” (18: 18 � 0), and “Sexual development” (15:
14 � 1). Other underrepresented processes are “Fatty acid metab-
olism” (9: 7 � 2), “GTPase, ATPase, and channels” (11: 10 � 1),
“Nuclear transport” (6: 6 � 0), “7 transmembrane domain and
heterotrimeric G protein signaling” (6: 6 � 0), “Cell death” (9: 9 �
0), “Siderophore synthesis and transport” (3: 2 � 1), and “Cell
cycle regulation” (3: 3 � 0).

Transcriptional Analysis of A. nidulans Conidiation
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Induction of asexual development provokes alterations in
primary metabolism pathways. The analysis of significantly reg-
ulated genes suggests that distinct cellular processes are altered to
fulfill the requirements of conidiophore development. For in-
stance, primary metabolism appears to be strongly reoriented.
Several genes coding for enzymes acting in glycolysis and gluco-
neogenesis, tricarboxylic acid (TCA) cycle, urea cycle, or amino
acid synthesis pathways are downregulated, and few of them up-

regulated. We also identified downregulated transcriptional regu-
lators that play a key role in nitrogen metabolite repression (AreA
and MeaB [37, 38]) or carbon catabolite repression (CreA [39]) or
are involved in the cross-pathway control of amino acid biosyn-
thesis in response to amino acid starvation (CpcA and JlbA) (40,
41). Strong variations in the levels of primary metabolism en-
zymes under a wide array of growth conditions have been com-
monly described, including reports of early biochemical studies of

FIG 2 Summary of the RNA-seq data set. (A) Box plot (csBoxplot software program) showing the distribution of the FPKM (fragments per kilobase of exon per
million fragments mapped) values. (B) Volcano graph showing differentially (in blue) and nondifferentially (in red) expressed genes. Values of �0 correspond
to downregulated genes, while values of �0 correspond to upregulated genes. (C) Schematic representation showing the location of significantly upregulated (in
red) and downregulated (in green) genes in each Aspergillus nidulans chromosome.
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fungal AD (42, 43). For example, experiments examining calci-
um-induced conidiation in Penicillium notatum (44) showed sev-
eral regulated enzymes, such as fructose-bisphosphate aldolase,
triosephosphate isomerase, pyruvate kinase, or glucose-6-phos-
phate dehydrogenase. Genes coding for these enzymes also appear
in our analysis to be significantly regulated. This metabolic switch
can be attributed to the starvation in nutrients associated with the

exposition of hyphae to the aerial environment, the stimulus used
in this work to induce conidiophore development (see below).

Air emergence and regulation of HogA/SakA MAP kinase
stress response pathway. Table S3 in the supplemental material
shows that an important number of significantly up- or down-
regulated genes are involved in the response to stress situations. A
large number of them belong to the HogA/SakA-mediated general

TABLE 1 Top 20 upregulated genes

Ranka Gene

FPKM valueb

Log2 FC DescriptionAsex Veg

1 An3227 24.1786 0.113703 �7.73232 Predicted monooxygenase activity
2 An7521 77.5662 0.482759 �7.32798 Unknown
3 An3247 20.8309 0.199484 �6.70631 Predicted ATP binding, ATPase activity
4 An4119 404.778 8.4472 �5.58252 Putative major facilitator superfamily protein
5 gelD 341.63 9.37753 �5.18708 Putative 1,3-beta-transglycosidase
6 An8459 20.258 0.560254 �5.17626 Predicted role in transmembrane transport
7 An6401 929.352 28.7111 �5.01655 Putative hydrophobin
8 rodA 93.0036 3.02418 �4.94267 Hydrophobin; protein involved in conidium development
9 An6477 110.534 4.10222 �4.75194 Predicted role in transmembrane transport
10 ivoB 214.457 8.3293 �4.68635 Conidiophore-specific phenol oxidase
11 An3336 15.8021 0.632131 �4.64375 Putative enodomannanase
12 An12331 5.72154 0.241462 �4.56653 Putative PKS-like enzyme
13 An2841 12.5751 0.540246 �4.54081 Predicted role in transmembrane transport
14 An8308 285.408 12.347 �4.5308 Unknown
15 An7898 6.75941 0.312821 �4.43349 Predicted role in transmembrane transport
16 phiA 188.471 9.37504 �4.32938 Protein required for normal phialide development
17 atrA 37.9445 1.91388 �4.30932 Putative plasma membrane ATP-binding cassette (ABC) transporter
18 An7891 13.9495 0.732813 �4.25062 Putative beta-1.4-endoglucanase
19 An5370 21.7855 1.27754 �4.09192 Predicted role in transmembrane transport
20 apdA 10.4226 0.670061 �3.95928 Putative hybrid PKS-NRPS
a Genes are ranked according to level of change in expression.
b Asex, asexual stage; Veg, vegetative stage.

TABLE 2 Top 20 downregulated genes

Ranka Gene

FPKM valueb

Log2 FC DescriptionAsex Veg

1 An2808 0.214378 11.3192 5.72247 Unknown
2 An9006 0.467779 20.7339 5.47002 Unknown
3 An4392 0.636518 23.7142 5.21941 Unknown
4 An7200 0.606272 21.4411 5.14427 Predicted role in transmembrane transport and integral to membrane localization
5 An8779 0.189746 6.34872 5.06433 Predicted hydrolase activity
6 An12277 0.138087 4.50668 5.02842 Predicted iron ion binding, nucleotide binding, oxidoreductase activity
7 An8159 0.321225 10.4837 5.02842 Predicted DDE1 transposon-related
8 An4586 35.07 951.717 4.76222 Predicted nucleic acid binding, zinc ion binding activity and intracellular localization
9 An7954 0.78813 21.1459 4.7458 Unknown
10 An5332 11.8009 294.354 4.64059 Predicted nutrient reservoir activity
11 An11313 5.67334 141.02 4.63556 Unknown
12 An10039 3.54792 88.0903 4.63394 Putative histidine acid phosphatase
13 An8733 1.43304 35.0303 4.61146 Predicted oxidoreductase activity
14 An7357 29.2723 705.244 4.59052 Unknown
15 An3341 0.351559 8.42835 4.58341 Predicted chromate transmembrane transporter activity
16 An3175 1.5925 35.8123 4.49109 Predicted transferase activity
17 An1320 0.233046 5.11311 4.45552 Predicted serine-type peptidase activity and role in proteolysis
18 An8621 5.62032 122.55 4.44657 Predicted role in transmembrane transport
19 mdpA 1.12835 22.6884 4.32967 Secondary metabolite regulatory protein
20 An5505 0.32594 6.49 4.31554 Unknown
a Genes are ranked according to level of change in expression.
b Asex, asexual stage; Veg, vegetative stage.
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stress response pathway (18, 45, and references therein). The ex-
pression of multiple factors from this pathway, starting with those
involved in signal perception and transduction, such as histidine
kinases (TcsA, involved in AD [46], and FphA, involved in recep-
tion of red light), the phosphotransfer protein YpdA, the response
regulators SrrA and SrrC, the mitogen-activated protein (MAP)
kinase kinase (MAPKK) PbsB, and the MAP kinase (MAPK)
HogA/SakA, is downregulated. TFs that act downstream, such as
NapA and AtfA, which are supposed to activate the expression of
proteins involved in the detoxification of stress-causing agents,
such as catalases CatA, CatC, or CpeA (47), are also downregu-
lated.

Previous works linked elements from this pathway with differ-
ent stages of AD. It was described that the loss of tcsA, the homo-
logue of the Saccharomyces cerevisiae transmembrane osmosensor
Sln1p, did not block initiation of conidiophore development but
appeared to prevent the cell divisions preceding formation of
conidia from phialides (46). Conidiation was also reduced in a
	fphA strain in comparison to that in the wild type (48). The loss
of SrrA or SskA activity has been linked to decreased brlA levels
(49). These previous observations strongly suggested that histi-
dine kinases and components of the phosphorelay system are re-
quired to coordinate different stages of AD and the response to
ambient stimuli (18).

Although transcriptional results obtained in this work pro-
vided valuable information on how this pathway is regulated at
VG and 5 h of AD, previous reports also described transcriptional
and translational changes at later stages of AD. For example, we
show in this work that the expression of the catalase-coding gene
catA decreases 10 times in the VG-to-early-AD transition (log2

FC � 3.17) (see Table S2 in the supplemental material). However,
it increases again at late stages of conidium production and in
mature conidia (50, 51). Furthermore, protein interaction, as well
as phosphorylation, is key in the control of the activity of proteins
from the HogA/SakA pathway (52, 53). For example, the TF AtfA
physically interacts with SakA and is required for its nuclear accu-
mulation in conidia and in stressed hyphae (53). SakA is tran-

siently phosphorylated after 20 to 60 min of air exposure (52) and
is also phosphorylated in conidia (53). It has been proposed that
SakA phosphorylation could be a general mechanism to regulate
the transition between nongrowing and growing states in fungi
(53). Thus, we suggest that the activity of this pathway may be
differently regulated as conidiophores mature, with stages of tran-
scriptional inhibition/activation and/or protein (de)phosphory-
lation.

Proteins involved in vegetative growth are inhibited after
asexual induction, while the composition of the cell wall under-
goes strong alterations. Polar-growth-related functions active at
VG are, in general terms, inhibited 5 h after the induction of
conidiation. At this stage of AD, vesicles are forming or already
formed, and this requires an isotropic mode of growth. In agree-
ment with this morphological observation, we found that of a total
of 25 significantly regulated genes that code for proteins involved
in different aspects of polar growth (establishment of polarity and
germination, endocytosis, polarisome components, proteins re-
quired for a proper branching pattern, cytoskeleton proteins,
etc.), all except one are downregulated (Fig. 3; see also Table S3 in
the supplemental material).

Seminal works on the morphology of conidiophores reported
that one characteristic feature of the foot cell was a thicker cell wall
than that of growing hyphae (20). Furthermore, it was described
that cell wall modifications associated with the maturation of
conidia occurred in three stages, which demanded the production
of four wall layers (19, 54). In this work, we identified 19 genes
involved in cell wall organization and biogenesis (see Table S3 in
the supplemental material), 10 down- and 9 upregulated in the
VG-to-AD transition. Both groups included genes involved in the
synthesis and processing of the main constituents of the cell wall:

- and �-glucans and chitin (55). Consequently, we cannot pro-
vide a detailed description on how the down- or upregulation of
these genes could affect the final cell wall composition of develop-
ing stalks and vesicles in comparison to that of vegetative hyphae.
However, our and previous data strongly point to the cell wall as a

FIG 3 Cellular processes significantly regulated during the transition from VG (19 h) to early stages of AD (5 h after induction) in A. nidulans. Block size is
determined by the number of previously known genes listed in Table S3 in the supplemental material and participating in each of these processes (bar � 1 gene).
Downregulated genes are shown in green, while upregulated genes are in red. For the complete list of genes in each process and their described or putative
function, see Table S3.
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target of important transformations during the initiation and pro-
gression of the synthesis of the conidiophore.

Sexual-asexual development balance. A general inhibition of
regulators of sexual development was also found in our study. It
has been previously reported that the deletion of the oxylipin bio-
synthetic gene ppoA increases the conidium/ascospore ratio (56).
In this context, here we found that ppoA levels are significantly
reduced after conidiation induction, probably to favor AD. Light
receptors of the velvet complex (48, 57, 58) were also downregu-
lated, as were other TFs, such as NsdC, an activator of sexual
development (59), or RosA, a repressor of sexual development
under carbon starvation conditions and in submerged culture
(60).

Among genes included in the group of conidiation genes, there
are factors that indirectly regulate AD or regulate the balance of
the asexual cycle and other morphogenetic processes, such as sex-
ual reproduction or VG (veA, bemA, or ppoA, for example). We
also found that the expression of TFs from the CDP pathway of
conidiation is differently regulated. Transcripts coding for factors
supposed to act at late stages of AD (metulae, phialides, and
conidia) are downregulated at early stages. This occurs with TF-
coding transcripts, such as vosA and abaA, and also with yA, re-
quired for the production of the pigment that provides A. nidulans
spores with the characteristic green color. Previous works de-
scribed no detection of these three transcripts by Northern blot-
ting (61–63). Although abaA is significantly repressed after the
induction of AD, our results also showed that its mRNA levels
remained near zero at both stages (see Table S2 in the supplemen-
tal material), probably not being enough for detection by North-
ern blotting. vosA and yA mRNA levels are higher than those of
abaA (see Table S2), and the two transcripts are expressed at sim-
ilar levels. However, neither vosA nor yA was detected at VG or
early AD by Northern hybridization (62, 63). This strongly sug-
gests that the apparent disagreement between our results and
those previously obtained by Northern blotting is a consequence
of the differences in the detection limit between this technique and
RNA sequencing.

We found six transcripts that were upregulated in the VG-to-
early-AD transition. One is, as expected, brlA, but we also found
transcripts required for conidium differentiation and integrity
(phiA and the hydrophobin coding gene rodA [64, 65]) or conid-
ium pigmentation (ivoB and ivoC [66, 67]). It would be interesting
to know why pigmentation genes such as yA are downregulated at
this stage and ivoB or ivoC is upregulated. It has been described
that the expression of the phenol oxidase-coding transcript ivoB
increases with the levels of its substrate N-acetyl-6-hydroxytryp-
tophan (AHT) (67). The increase in ivoC expression is delayed
approximately 4 h with respect to that of ivoB (66) (see Table S2 in
the supplemental material). However, we cannot compare the ex-
pression pattern of these genes with that of yA, since it was mea-
sured in surface cultures while yA expression was analyzed after
the deposition on solid plates of liquid-medium-grown mycelium
pellets (63).

It is noteworthy that none of the TFs belonging to the UDA
pathway was found within this group of significantly altered
genes. These TFs are expressed both at VG and at early AD (17, 27,
28, 68), and some of them show remarkable differences in expres-
sion according to results of Northern blot experiments (27, 28,
68). Our RNA-seq results do not correlate with those previously
described, but their transcript levels support the proposed role of

UDA factors at both time points of development studied in this
work.

GO analysis reveals strong alterations in oxidoreduction,
transcriptional, and transmembrane transport processes. The
analysis of the 1,948 genes that were significantly altered and con-
tained only a systematic name revealed that the expression of 149
(7.6%) genes was increased at early AD, while 1,798 (92.3%) genes
were downregulated. Their GO analyses included the prediction
of the cellular localization (cellular component), the function (bi-
ological function), and the cellular process in which they may
participate (biological process). Figure S2 in the supplemental
material shows the statistical distribution of these GO analyses,
while Fig. 4 focuses on only the most-represented biological func-
tions.

Figure 4 indicates that oxidation-reduction reactions are the
most represented, including oxidoreductases of different types,
each one requiring specific cofactors (Fig. 4; see also Fig. S2 in the
supplemental material). The second and third groups include
those genes with a predicted transmembrane transporter activity
or transcriptional regulators. The modifications observed in the
expression pattern may be linked to changes in nutrient availabil-
ity and environmental conditions that occur upon induction of
AD. The lower availability of nutrients on emergence to the atmo-
sphere likely activates autophagy to sustain the energetic require-
ments of developmental changes (69, 70). This would involve a
reorganization of carbon and nitrogen metabolism (see above)
(42–44, 71, 72) and a dramatic change in nutrient compartmen-

FIG 4 GO functional enrichment analysis of significantly regulated genes
between noninducing and inducing conditions.
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talization and transport mechanisms. Furthermore, the highly ox-
idative air environment might require a higher potential for the
detoxification of reactive oxygen species (ROS). The idea suggest-
ing that ROS play important physiological roles was already
known (73). It is tempting to suggest that these changes may be
controlled by a new genetic or functional relationship of tran-
scriptional regulators.

Role of secondary metabolism in asexual development sig-
naling. In our analysis, the presence of transcripts predicted to be
involved in secondary metabolic and biosynthetic pathways is
noteworthy. This includes polyketide synthases (PKS) and nonri-
bosomal peptide synthetases (NRPS) but also enzymes and TFs
acting on known secondary metabolite pathways (see Table S3 in
the supplemental material). Besides, the three most represented
biological functions in our GO analysis, oxidoreduction, trans-
membrane transport, and transcriptional regulation, are usually
involved in the control of secondary metabolite biosynthetic pro-
cesses and are grouped in metabolic clusters in fungal genomes
(see, for example, references 13, 74, 75, and 76).

Secondary metabolite production is tightly linked with devel-
opment in fungi, in terms of both signaling and toxin biosynthesis
(77). Specific molecules are required to induce the asexual cycle
(78–80). One of these metabolites has recently been identified in
A. nidulans as the meroterpenoid dehydroaustinol (81), but there
are additional extracellular and diffusible compounds whose
structure has not been elucidated yet (see, for example, references
32, 82, and 80).

Thus, we searched for secondary metabolic enzymes within the
list of genes with significantly altered expression when comparing
VG and early AD. First, we confirmed that the genes An1594,

An3252, and An9314, coding for diterpene synthases (83), and the
genes xptA, tdiB, An11080, An11194, and An11202 (84), coding
for aromatic prenyltransferases, were absent from our list of sig-
nificantly regulated genes. Second, we searched for PKS- or NRPS-
coding genes, following the work of Von Döhren on one hand and
Nielsen and coworkers on the other hand (84, 85) (Fig. 5; see also
Table S4 in the supplemental material). Yellow squares in Fig. 5
designate significantly altered PKS- or NRPS-coding genes (Fig. 5
and 6; see below). Ten genes belong to this first group, 5 being
upregulated at the early AD and 5 downregulated. In this group
are the PKS-coding genes An2032 (also known as pkhA), related to
benzaldehyde derivative biosynthesis, An6791, An8910, An9005,
and An12331 (� An7838), the NRPS-coding genes An2064,
An5318, and An6236 (also known as sidD), related to fusarinine-
type siderophore biosynthesis, and An9129, and the hybrid PKS-
NRPS-coding gene An8412 (also known as apdA), involved in
aspyridone synthesis (74, 84–87).

However, an analysis based exclusively on the PKS and NRPS
coding transcripts would lead to a biased point of view. It has been
shown that the transcriptional control of each metabolic cluster
and thus the concentration of the secondary metabolite linked to
their activity depends on mechanisms exerted on various cluster
functions, such as oxidoreduction, transcriptional regulation, or
transport (13, 74, 76). Thus, we decided to study the genomic
flanking regions of specific PKS- or NRPS-coding genes shown in
Fig. 5. We included three more PKS- or NRPS-coding genes in this
analysis, since although they were not significantly regulated, they
defined genomic regions where contiguous genes were signifi-
cantly regulated (see black squares in Fig. 5) (74, 84): An2035 (also
known as pkhB), located in the same metabolic cluster as An2032

FIG 5 Schematic representation of Aspergillus nidulans chromosomes showing the location of genes coding for secondary metabolite producer polyketide
synthases (PKSs) (in blue), nonribosomal peptide synthetases (NRPS) (in orange), and dimethyl allyltryptophan prenyltransferases (DMAT) (in pink). Those
genes significantly regulated during the morphological transition analyzed in this work are in yellow squares. In black squares are those which, being nonsig-
nificantly regulated, belong to secondary metabolite gene clusters in which at least three genes are significantly regulated.
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(pkhA) (see above), An3230 (also known as pkfA), involved in
orsellinaldehyde derivative synthesis, and the NRPS gene An11820
(� An9291). Based on these criteria, we focused on seven clusters
in which at least three genes were significantly regulated, one of them
being the PKS- or NRPS-coding gene or not (Fig. 6). The extension of
each cluster in Fig. 6 was delimited according to the SMURF pro-
gram, a web-based application for systematically predicting clustered
secondary metabolism genes based on their genomic context and
domain content (www.jcvi.org/smurf/) (88). The extension of the
cluster defined by the PKS genes An2032 (pkhA) and An2035 (pkhB)
was modified with respect to that delimited by SMURF based on our
blast, synteny, and evolutionary analyses.

This last cluster is clearly upregulated. According to our syn-
teny analyses (not shown), it is not conserved in the genus Asper-
gillus. However, it maintains the position and orientation of the
genes comparing to a cluster found in Metarhizium robertsii, an
endophytic insect-parasitic fungus that translocates nitrogen di-
rectly from insects to plants (89). This suggests that the activity of
this cluster is not directly required for the induction of conidiation
or could be required at morphological stages that occur exclu-
sively during A. nidulans conidiophore development but not in
the rest of Aspergillus spp. included in the synteny analysis.

The cluster defined by the An6236 (sidD) NRPS is also upregu-
lated. Most genes from this cluster maintain their position in the
genome of Aspergillus spp. included in the synteny analysis (not
shown), suggesting that products related to fusarinine C and try-
acetylfusarinine C from A. fumigatus (90) are induced during A.
nidulans conidiation. Siderophore biosynthesis requires L-orni-
thine as the starting product. Thus, it is plausible that conidiation

defects caused by mutations in the ornithine transcarbamylase
coded by argB (16) could be related to alterations in the sidero-
phore biosynthetic pathways.

The three clusters defined by the NRPS genes An2064, An5318,
and An11820 are clearly downregulated, suggesting that the un-
known metabolites linked to their activity are preferentially re-
quired at VG. Finally, some genes (mainly oxidoreductases and
membrane transporters) from clusters defined by the PKS genes
An3230 (pkfA), involved in orsellinaldehyde derivative synthesis
(74), or An9005 are upregulated while others are downregulated.
This strongly suggests that the availability, concentration, and/or
final structure of the related secondary intermediates are finely
tuned through complex regulatory mechanisms.

Overall, the results presented in this section suggest that sec-
ondary metabolism is transcriptionally reoriented during the ini-
tial stages of conidiophore development, while cluster analysis
reveals the existence of multiple regulatory mechanisms for those
metabolic pathways.
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