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I. Introduction

Polarized growth is the mechanism by which fila-
mentous fungi extend their hyphae. Microtubules
(MT) and filamentous actin (F-actin), in combi-
nation with their corresponding motor proteins,
kinesin, dynein and myosin, play important roles
in this process. Actin has an essential role for tip
elongation and septation. It is required for vesicle
secretion and cell wall extension, and possibly -
together with the MT cytoskeleton - for the local-
ization of so-called cell end marker or landmark
proteins, which control growth directionality. The
exact contribution of the MT cytoskeleton on polar-
ized growth is less clear. Genetic, biochemical and
cell biological approaches in Aspergillus nidulans
and other fungi led to a modified view of many MT-
related aspects within the past few years. There is
increasing evidence that MT strings, which are vi-
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sualized by immunostaining or GFP-tubulin fusion
proteins, consist of several MTs and their dynam-
ics appears to be different in fast-growing hyphal
tips as compared with young germlings. Whereas
the spindle pole bodies were considered as the
only, or the main, microtubule organizing centres
(MTOCs) in filamentous-fungi; it appears that ad-
ditional MTOCs outside the nuclei are responsible
for the generation of the complex MT array. In ad-
dition to new insights into the MT network and its
dynamics, the roles of several kinesins have been
elucidated recently and their interplay with dynein
investigated. It became clear that MT functions are
interwoven with those of the actin cytoskeleton and
that three main structures are required for polar-
ized growth: the Spitzenkorper (vesicle supply cen-
tre), the polarisome and probably cell end markers
at the cortex. We propose a model for polarized
growth, where the MT cytoskeleton continuously
provides the building material within vesicles to the
Spitzenkorper and determines growth directional-
ity by the delivery of cell end marker proteins and
the actin cytoskeleton is crucial for the last step of
vesicle secretion.

II. The Hyphal Growth Form
and the Spitzenkorper

One fascinating aspect of filamentous fungi is their
continuous tip elongation. Whereas this phase of
polarized growth only lasts a short time in the
life cycle of the budding yeast Saccharomyces cere-
visiae, it is the main growth form of filamentous
fungi. Fungi are surrounded by arigid cell wall and,
in order to expand the hyphae, itis assumed that the
walls need to be plasticized and new membrane has
to be inserted. These two processes are linked be-
cause enzymes, which are required outside the cell,
are transported towards the tip within vesicles. The
process has been reviewed recently (Sietsma and
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Wessels 2006; Virag and Harris 2006a). The vesi-
cles fuse with the cytoplasmic membrane and thus
lead to expansion of the membrane and delivery
of their contents (Bartnicki-Garcia et al. 1995). The
place where vesicles are generated may be far be-
hind the growing tip (see Chap. 1 in this volume).
The involvement of vesicles for polarized growth
was proposed many decades ago, when Brunswick
observed an accumulation of vesicles in the apical
dome of fungal hyphae, using phase contrast mi-
croscopy (Brunswick 1924; Girbardt 1957; Fig. 5.1).
This structure was named with the German word
“Spitzenkorper” (= apical body) or as the vesi-

Cell end factors

Fig.5.1. Microtubule, actin and nuclear
organization. a Hyphal tip of N. crassa
with GFP-labelled nuclei: left GFP, mid-
dle phase contrast, right overlay. b GFP-
labelled MTs in the tip of N. crassa. ¢ GFP-
tagged nuclei in a hyphal tip of Asp. nidu-
lans. d GFP-labelled MTs in Asp. nidu-
lans. e actin in Asp. nidulans. Images of
N. crassa were kindly provided by Rosa
R. Mourifo Pérez (Departamento de Mi-
crobiologia, Centro de Investigacion Ci-
entifica y Educacion, Ensenada, Mexico).
The actin—GFP construct was kindly pro-
vided by Miguel Pefialva (Cesic, Madrid,
Spain)

Fig.5.2. Model of a growing hyphal tip
with-MTs, cargo-delivering kinesin mo-
tor proteins, the Spitzenkorper, the po-
larisome and cell end markers. Modified
after Harris et al. (2005). See text for fur-
ther explanation

cle supply centre (VSC; Girbardt 1957; Bartnicki-
Garcia et al. 1995). The latter name refers to its pro-
posed function as a transit station for vesicles from
the hyphal body to the plasma membrane. The po-
sition of the organelle determines growth direction
(Riquelme et al. 1998). S. Bartnicki-Garcia (River-
side, Calif., USA) and C. Bracker (West Lafayette,
Ind., USA) demonstrated fantastically the impor-
tance of this organelle for polarized growth.

Tip extension needs to be a well controlled pro-
cess, because secretion of cell-wall lytic enzymes,
required for loosening the cell wall prior to ex-
tension, as well as enzymes for cell wall synthe-
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sis, may be deleterious for the cell. In addition,
new places of polarized growth need to be estab-
lished for every new branch formed (Riquelme and
Bartnicki-Garcia 2004). This shows that tip elonga-
tion is likely to require the full equipment of the cel-
lular toolbox. Several organisms are studied exten-
sively to understand the phenomenon at the molec-
ular level. Most importantly are Sac. cerevisiae and
the closely related but filamentously growing Ash-
bya gossypii, the fission yeast Schizosaccharomyces
pombe, the basidiomycete and plant pathogen di-
morphic Ustilago maydis, the human pathogenic
Candida albicans and several obligate filamentous
fungi, such as Neurospora crassa and Asp. nidulans
(Steinberg et al. 2001; Pruyne et al. 2004; Crampin
et al. 2005; Harris et al. 2005; Martin and Chang
2005; Philippsen et al. 2005). Research on polar-
ized growth currently has a very high impact, be-
cause it is considered as one major target for the
development of antifungal drugs.

ITI. The Microtubule Cytoskeleton

A. Organization
of the Microtubule Cytoskeleton

MTs are hollow tubes composed of 13 protofila-
ments, each of which is made up with the het-
erodimer af-tubulin as the building block. MTs
have an inherent instability and continuously elon-
gate at their plus end, where a-tubulin dimers are
added. One parameter, which determines the elon-
gation rate, is the concentration of dimers in the
cell. Both tubulin subunits contain a bound GTP.
The nucleotide-binding pocket islocated at the in-
terface between the a- and p-tubulin subunits and
thus this GTP is rather stable. In contrast, GTP in
the B-tubulin subunit is exposed and undergoes
easily hydrolysis. Once B-tubulin contains GDP,
the assembly is blocked and a catastrophic event
occurs.

MTs are visible in fixed cells by immunolocal-
ization light microscopy (Fischer and Timberlake
1995; Czymmek et al. 1996; Bourett et al. 1998) or
by electron microscopy (Jung et al. 1998) but these
methods do not allow the study of MT behaviour
in living cells. This became possible after the ad-
vent of the green fluorescent protein (GFP). In Sac.
cerevisiae interphase cells, short MTs are attached
to nuclei and their growth towards the cortex and
subsequent shrinkage causes short-distance move-
ment of the nuclei. The situation changes once the

yeast cell enters the division cycle. The nuclear
spindle pole body divides, the two organelles move
to opposite positions of the nucleus and polymerize
the spindle MTs. In addition, the spindle pole bod-
ies produce cytoplasmic MTs, which in turn medi-
ate MT-cortex interactions (Hoepfner et al. 2000).
In Sch. pombe interphase cells contain several cy-
toplasmic MTs, which span the entire cell. Because
they serve as tracks to deliver so-called cell end
markers, they determine growth directionality in
this yeast (Tran et al. 2001).

In filamentous fungi, GFP-tagged MTs were
studied in some detail in N. crassa and Asp.
nidulans in X. Xiang’s laboratory (Bethesda, Md.,
USA). MTs are quite inflexible structures and
their orientation mainly depends on the shape of
the fungal cell. Hence, they are mostly aligned
parallel to the growth-axis and they range in
number over 3-6 (Fig. 5.1). Asp. nidulans MTs
extend with a speed of about 14 pm/min, reach
the cortex, pause for some time and undergo
a catastrophic event. Subsequently, MTs shrink
with a speed of about 30 pm/min and MTs either
depolymerize all the way to the MTOC or rescue
occurs before this, and MTs elongate again (Han
et-al. 2001). Slightly different values were recently
obtained in the group of B. Heath (Sampson and
Heath 2005). They also observed that short MT
fragments were able to slide towards the hyphal tip.
In N. crassa the MT network was first visualized
by N. Read’s group in Edinburgh (UK) and was
analysed recently in more detail (Freitag et al. 2004;
Mourifo-Pérez et al. 2006). From observations
of the MT cytoskeleton in these two filamentous
fungi it is obvious that the organization appears to
be quite different. In N. crassa the MT cytoskeleton
is far more complex than in Asp. nidulans and
the number of nuclei in one compartment is also
very different between the two fungi. Another big
difference is the regulation of mitosis. Whereas
nuclear division is synchronized in Asp. nidulans
it is not in N. crassa (Suelmann et al. 1997; Freitag
et al. 2004).

Investigations of MT arrangements within
a cell were done by immunofluorescence and
recently by using fluorescently labelled tubulin
(Fischer and Timberlake 1995; Ding et al. 1998;
Han et al. 2001; Freitag et al. 2004; Czymmek et al.
2005). It appears that the structures, which can
be seen after immunostaining or as GFP-labelled
filaments, consist of several individual MTs. There
is increasing evidence for this organization, espe-
cially coming from studies with Sch. pombe. Here it
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was shown recently that the orientation of MTs can
be opposite in one bundle and that a kinesin-like
motor protein in combination with dynein is
required for sliding of individual MTs within
abundle and maintenance of MT polarity (Carazo-
Salas et al. 2005). For Asp. nidulans Konzack et al.
(2005) reported that the fluorescence intensity of
a MT varies dynamically and that the regions with
low intensity do recover brightness after some
time. Similarly, after bleaching of a given MT at
one place, brightness returns quickly (Veith et al.
2005). In addition, thin MT filaments occasionally
detach from a MT for some time before they merge
again to form a thick MT (R. Fischer, unpublished
data). These observations are in agreement with
a model that MT filaments consist of a bundle,
and that individual MTs within a bundle undergo
individual behaviour and dynamics.

B. Origin of Microtubules

MTs cannot efficiently assemble de novo in a eu-
karyotic cell, but require an initiation point, the
MTOC. This point is characterized by a protein
complex, whose characteristic component is
y-tubulin (Pereira and Schiebel 1997; Job et al.
2003; Aldaz et al. 2005; Doxsey et al. 2005).
Originally discovered in Asp. nidulans, y-tubulin
was found in all eukaryotes studied and, the
concept of y-tubulin-mediated nucleation of MT
polymerization is an accepted model (Oakley
and Oakley 1989; Oakley et al. 1990; Oakley 1995,
2004). However, the exact mechanism is still
under debate. It appears that y-tubulin in higher
eukaryotes forms a 2.2-MDa ring complex con-
sisting of 12 or 13 (different numbers exist in the
literature) y-tubulin subunits associated with other
proteins, the so-called y-tubulin ring complex
(*TuRC; Aldaz et al. 2005). The y-TuRC acts as an
initiator complex, where 13 tubulin protofilaments
emanate. It has been known for a long time that
fungal spindle pole bodies (SPBs) are very active
MTOCs (Jaspersen and Winey 2004). The SPB
is embedded into the nuclear envelope, divides
prior to mitosis and, by definition, localizes at the
poles of the mitotic spindle. SPBs consist in Sac.
cerevisiae of an inner and an outer plaque and they
are able to polymerize MTs on both sides of the
nuclear envelope. During mitosis the outer MTs
are called astral MTs, but also in interphase SPBs
act as active MTOCs in Sac. cerevisiae as well as
in filamentous fungi (Heath 1981). Whether the

protein composition of the SPB in Sac. cerevisiae
and in filamentous fungi is largely conserved or
more diverse remains to be determined.

It seems that the SPBs are the only places from
which the yeast Sac. cerevisiae polymerizes MTs
(see movies accompanying Hoepfner et al. 2000).
However it must be noted that cytoplasmic MTs ap-
pear not to play many important roles in Sac. cere-
visiae, besides the positioning of the nucleus prior
to mitosis (Maekawa and Schiebel 2004). The cy-
toplasmic MT array is not very pronounced and is
usually limited to a few MTs growing out of the SPB
into the cytoplasm. In contrast, filamentous fungi
employ MTs for their fast, polarized growth during
interphase (Riquelme et al. 2003; Horio and Oak-
ley 2005; Fig. 5.1). Nevertheless, it was assumed for
along time that SPBs are the only place for MT initi-
ation (Oakley 2004; Czymmek et al. 2005; Sampson
and Heath 2005). This assumption was based on
the finding that the intracellular af-tubulin pool
is used for the assembly of spindle MTs as well as
for cytoplasmic MTs. Indeed, cytoplasmic MTs are
generally disassembled prior to mitosis and regen-
erate thereafter (Ovechkina et al. 2003; Sampson
and Heath 2005). In order to determine the ori-
gin of new MTs, re-growth of MTs was observed
in Sch. pombe after depolymerization of MTs by
drugs (Mata and Nurse 1997). These studies re-
vealed that, in fission yeast, MTs are generated
from the SPB and other MTOCs around the nu-
cleus and in the cytoplasm. During cell division
an equatorial MTOC (EMTOC) becomes very im-
portant (Hagan 1998; Sawin et al. 2004; Venkatram
et al. 2005). The origin of MTs from the cell cen-
tre leads to an orientation with their plus ends to-
wards the growing ends. Recently, another tool was
used to determine the origin of MTs. Using MT
plus end-localizing proteins, such as homologues
of the mammalian EB1, MT initiation was anal-
ysed in the plant pathogenic basidiomycete Usti-
lago maydis. It was found that MT nucleation oc-
curs at three places: at dispersed cytoplasmic sites,
at a polar MTOC and at the SPB (Straube et al.
2003).

In filamentous fungi, our knowledge of MT or-
ganization is restricted to a few species, such as
the chytridiomycete Allomyces macrogynus, the ba-
sidiomycete U. maydis, and the ascomycete Asp.
nidulans which is one of the best studied exam-
ples. Whereas Sampson and Heath (2005) reported
that MTs emanate only from SPBs, Konzack et al.
(2005) demonstrated that MTOCs exist apart from
the SPBs. This discrepancy may be due to the dif-
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ferent methods used. In the first study, the authors
observed GFP-labelled MTs and the location of nu-
clei was determined by the absence of cytoplasmic
fluorescence. The authors of the second study used
simultaneous labelling of nuclei with a red fluores-
cent protein and GFP-labelled tubulin. In addition,
a plus end-tracking protein, KipA, was used to de-
termine the origin of MTs. MTOCs were found at
the SPBs but also in the cytoplasm and at septa
of Asp. nidulans (Fig. 5.3). This organization re-
cently received further evidence through the char-
acterization of a novel MTOC-associated protein,
ApsB (Veith et al. 2005). Here, the authors demon-
strated that MTOC:s at septa are important for the
production of the interphase cytoplasmic MT ar-
ray (Fig. 5.3). These findings are in good agree-
ment with the results obtained in Sch. pombe and
U. maydis.

It is still an open question whether there
are MTOCs at hyphal tips of filamentous fungi.
Whereas y-tubulin can be visualized at the tips of
All. macrogynus hyphae and thus MTs polymerize
from the tip to the back (McDaniel and Roberson
1998), y-tubulin has not yet been detected at that
place in e.g. Asp. nidulans. Nevertheless, using the
kinesin motor KipA, Konzack et al. (2005) found

E . Interphase
..-'—.=-—‘-='_"—/-..:..:‘_>

rOC L Mitosis
nucleus \

Interphase after septation

—8>

MTOC at septum

that sometimes MTs do also polymerize from the
tip. It has to be considered that a MT occasionally
does not depolymerize upon contact with the
cortex but bends along the cortex towards the rear
of the hypha. If this MT would continue growth,
it could explain the observed comets from the tip
to the back of the hypha. In N. crassa the situation
appears to be far more complicated because of the
higher number of MTs and nuclei (Freitag et al.
2004; Mourino-Pérez et al. 2006). Detailed studies
of MT origin have not yet been performed.

C. The Microtubule Plus End

MTs grow and shrink in a:treadmilling manner if
they are polymerized in vitro. In comparison, in
vivo MTs are rather stable at the minus end and
dynamics occur mainly at the MT plus end. It is well
accepted that this MT end consists of alarge protein
complex, which is involved in the regulation of MT
dynamics aswell as in the regulation of interactions
with cortical actin, membrane proteins or proteins
associated with the kinetochore of chromosomes
(Schuyler and Pellman 2001b; Hestermann et al.
2002; Akhmanova and Hoogenraad 2005). Given

Fig.5.3. MTOCs in Asp. nidulans.
a Hypha with DAPI-stained nuclei
and GFP-labelled spindle-pole body
(SPB)-associated ApsB. Nuclei are
evenly spaced and at each nucleus a SPB
is visible. b Scheme of a MTOC with
y-tubulin and other proteins described
in Sac. cerevisiae. Adapted from Pereira
and Schiebel (1997) and Oakley (2000).
¢, d MTOCs visualized by GFP-ApsB
fusion, at septa: left phase contrast,
right same hypha under fluorescent
conditions. Inset in ¢ Enlargement of the
septum and overlay of phase contrast
and fluorescent images. e MTOCs are
found at the nuclei, in the cytoplasm
and at septa. Taken from Konzack et al.
(2005), with permission
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the diversity of interacting partners, it is obvious
that the protein complex composition may vary
depending on the function of the MT and is likely
to be a highly controlled and organized structure.
There are three different ways of how proteins can
reach the MT plus end and remain associated with
it as the MT is growing (Howard and Hyman 2003;
Al-Bassam et al. 2006).

In fungi the best studied organisms with
respect to the MT plus end are Sac. cerevisiae and
Sch. pombe. In Sac. cerevisiae MT-cortex interac-
tions play important roles for the positioning of the
mitotic spindle and nuclear migration (Schuyler
and Pellman 2001a). One of the most prominent
examples of a MT plus end-associated protein is
dynein (Fig. 5.4). It localizes to the MT tip and
hitchhikes with the growing filament to the cell
periphery. Once at the cortex, dynein is activated
and pulls the attached MT towards the cortex. This
leads to translocation of the nucleus (Schuyler and
Pellman 2001a; Maekawa et al. 2003; Sheeman et al.
2003; Maekawa and Schiebel 2004). The kinesin
motor protein Kip2 appears to be responsible for
the plus end localization of several proteins, e.g.
the CLIP170-like protein Bikl (Carvalho et al.
2004). Similar to the situation in Sac. cerevisiae, the
CLIP170-like protein of Sch. pombe, Tip1, localized
to MT plus ends. The responsible motor for. this
localization was Tea2 (Busch et al. 2004). However
MTs do not play such important roles for polarized
growth in yeasts, in comparison with filamentous
fungi. Only some components have been found
which localize at MT plus ends, among them are
subunits of the dynein motor complex (Zhang et al.
2002). Interestingly conventional kinesin, KinA, is
required for their MT tip localization (Zhang et al.
2003; Fig. 5.4). The CLIP170-like protein, ClipA,
in Asp. nidulans does also accumulate at MT plus
ends and its localization is also dependent on the
Tea2/Kip2 homologue KipA (Efimov et al. 2006).

The question is which role do the plus end-
localized proteins play for polarized growth. As
mentioned above, MT-cortical interactions are
necessary for dynein-dependent nuclear position-
ing prior to mitosis in Sac. cerevisiae (Carminati
and Stearns 1997). In Asp. nidulans dynein is also
required for nuclear positioning and migration;
and recently Veith et al. showed that the interaction
of MT plus ends with the cortex contributes to
the dynamics of mitotic spindles (Xiang et al.
1994; Xiang and Fischer 2004; Veith et al. 2005).
Whether interphase nuclei are pulled through
similar MT-cortex interactions is not clear yet.

oy . 3 y —

Fig.5.4. The role of conventional KinA and Kip2 family
kinesin KipA. a Comparison of a wild type with a conven-
tional kinesin deletion mutant (taken from Requena et al.
2001).b Scheme of a MT with the MT plus end complex. This
protein complex consists of several proteins, e.g. KipA or
LIS1, conventional kinesin transports vesicles and compo-
nents of the plus end complex, for instance dynein (Zhang
et al. 2003). A direct interaction between KinA and dynein
or dynactin has not yet been verified. Modified after Hes-
termann et al. (2002) ¢, d When KipA, which is suggested
to be involved in the delivery of cell end markers, is miss-
ing, hyphae lose directionality. Images taken from Konzack
et al. (2005), with permission

Whereas the role of the MT plus end protein
complex is quite obvious for force generation to
translocate organelles, a role for polarized growth
is less obvious. Some new ideas came from obser-
vations in growing tips of Asp. nidulans and visual-
ization of MTs. Konzack et al. (2005) described that
MTs merge into one point in the apex. Given that
vesicles constantly travel towards the vesicle supply
centre, the position of MT ends determines the vesi-
cle supply centre location. In the kipA (tea2/kip2)
mutant, MTs did not merge into one point and
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hyphae grew in meandering curves rather than
straight. This was explained by the lack of pro-
teins (normally transported by KipA) at the plus
end which mediate cortical contact. There is good
evidence for such a situation in Sch. pombe. It was
shown that the cortex protein Teal is transported by
Tea2 (Browning et al. 2003; Martin and Chang 2003;
Sawin and Snaith 2004). If either of the two genes is
deleted, Sch. pombe cells appear curved or T-shaped
(Snell and Nurse 1994; Browning et al. 2000). Hence
Teal and other proteins were named cell polarity
determinants or cell end marker proteins. However,
to prove such a model in Asp. nidulans, cargoes of
KipA have to be identified and characterized. An-
other crucial piece in the puzzle is the identifica-
tion of cortex proteins. Whereas cortical contacts
of MTs involved in nuclear migration require the
cortical protein ApsA in Asp. nidulans (Numl in
Sac. cerevisiae; Veith et al. 2005), this interaction
appears not to be necessary for polarized growth
(Fischer and Timberlake 1995). In Sch. pombe a new
protein, Mod5, was described as a membrane an-
chor for the polarized growth machinery (Snaith
and Sawin 2003). However, in filamentous fungi,
a protein with significant sequence similarity has
not yet been identified.

D. The MT Lattice

MT function and dynamics are not only deter-
mined by the plus and minus ends, but also by the
filament lattice, which in higher eukaryotes can be
decorated with a number of different microtubule-
associated proteins (MAPs), which in turn may
control the activity of associated motor proteins
(Baas et al. 1994; Cassimeris and Spittle 2001; Baas
and Qiang 2005; Fig. 5.4). Despite the abundance of
those proteins in higher eukaryotes, it is not clear
yet whether proteins like Tau exist in filamentous
fungi. Proteins such as katanin and spastin could be
conserved proteins, because sequences with high
similarity can be found in the Asp. nidulans and
Asp. fumigatus genomes (Konzack, unpublished
data). Experimental data for the role of this class
of MT-associated proteins are not yet available for
filamentous fungi.

E. MT-Dependent Motor Proteins

MTs and their dynamics are in principle sufficient
to create force and transport cargoes (attached to
the growing end) in a cell. However, two classes

of motor proteins have evolved which guarantee
fast MT-dependent movement in the cell, the mi-
nus end-directed dynein and the plus end-directed
kinesins (Fig. 5.4). Some kinesins also move in the
opposite direction. Both motor classes are charac-
terized by a motor domain in which ATP is hydrol-
ysed (Hirokawa 1998). Within the protein the loca-
tion of the motor domain can be N- or C-terminal
as well as in the middle region. How chemical en-
ergy is converted into conformational changes and
how force is generated is best understood for con-
ventional kinesin. Interested readers should refer to
several recent reviews (Woehlke and Schliwa 2000;
Schliwa and Woehlke 2003; Yildiz and Selvin 2005;
Adio et al. 2006).

Whereas all fungi employ a single dynein for
their transport processes, their genomes usually
contain several kinesin-encoding genes. For in-
stance, Asp. nidulansharbours 11 and N. crassa har-
bours ten different kinesins (Rischitor et al. 2004;
Fuchs and Westermann 2005). BimC was the first
kinesin discovered in Asp. nidulans and defines the
entire class of BimC-like kinesins (Enos and Mor-
ris 1990). The gene was discovered in a screen for
temperature-sensitive Asp. nidulans mutants with
defects in mitosis (bim = block in mitosis). BimC
is a C-terminal motor which forms a tetramer with
two motor domains opposite to each other. Because
every head domain binds to a MT, this arrangement
allows cross-linking of adjacent M Ts. This feature is
very important during mitosis, where mitotic spin-
dle MTs slide along each other to distribute chro-
mosomes (Kapitein et al. 2005). Whereas BimC was
discovered in a genetic screen (Morris 1976), four
other kinesins were isolated in reverse genetic ap-
proaches.

A second motor with functions in mitosis is the
C-terminal kinesin-like protein KlpA with similar-
ity to Sac. cerevisiae Kar3 (Prigozhina et al. 2001).
The gene was isolated through a PCR approach and
subsequently characterized. Deletion of klpA alone
did not produce any severe phenotoype but sup-
pressed a bimC mutation (O’Connell et al. 1993).

Another kinesin with a function in mitosis is
the Kip3 family member KipB, where the motor
domain is localized closer to the N-terminus. Gene
deletion did not cause any defect in hyphal exten-
sion or organelle movement, but in chromosome
segregation (Rischitor et al. 2004). This was sur-
prising, because a similar motor in Sac. cerevisiae,
Kip3, is involved in nuclear migration (Miller et al.
1998). However, Asp. nidulans KipB results are in
good agreement with results for the homologous
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proteins in Sch. pombe, Klp5 and Klp6 (West et al.
2002).

Two motors with N-terminal motor domains
and pronounced roles in polarized growth are con-
ventional kinesin, KinA and the CENP-E family ki-
nesin KipA. Deletion of kinA resulted in slower
hyphal growth, which is similar to effects in other
fungi (Lehmler etal. 1997; Seiler et al. 1997; Wu et al.
1998; Requena et al. 2001; Fig. 5.4). It is generally ac-
cepted that this motor transports vesicles towards
the extending tip and provides cell wall compo-
nents (Seiler et al. 1999). In addition, it appears
to be involved in other cellular processes related
to polarized growth, namely mitochondrial and
nuclear distribution. Whereas nuclear distribution
was affected in N. crassa and Asp. nidulans, mito-
chondrial distribution was changed in N. haemato-
cocca (Wu et al. 1998). This may be due to the fact
that mitochondrial movement depends on the actin
cytoskeleton in Asp. nidulans (Suelmann and Fis-
cher 2000) and on the MT cytoskeleton in N. crassa
(Fuchs et al. 2002; Fuchs and Westermann 2005).
Whether mitochondrial distribution is also altered
in N. crassa conventional kinesin mutants, has not
yet been studied. The mechanism of how conven-
tional kinesin may contribute to mitochondrial or
nuclear distribution is not yet clear, but it could be
that the effects are indirect. It was shown in Asp.
nidulans that KinA is required for transportation
of dynein subunits to the plus end of MTs (Zhang
et al. 2003; Fig. 5.4). Dynein is a crucial motor for
nuclear migration; and exclusion of dynein from
the MT plus ends could cause the observed nuclear
clustering (Xiang et al. 1994). In addition, it has to
be considered that conventional kinesin may well
be involved in delivering other components of the
MT plus end complex.Lack of conventional kinesin
could thus influence the dynamics of MTs as well
as their cortical interaction.

KipA of Asp. nidulans is similar to Tea2 in Sch.
pombe and is characterized by an N-terminal mo-
tor domain (Konzack et al. 2005). It accumulates at
MT plus ends and appears to reach this place by an
intrinsic motor activity. Mutant proteins, in which
a crucial residue for ATP hydrolysis was replaced,
lost the ability to accumulate at MT tips but dec-
orated them evenly. These findings were in agree-
ment with studies of Tea2 in Sch. pombe (Browning
et al. 2003). Gene deletion caused a surprising phe-
notype in Asp. nidulans. Delta kipA strains grew
as well as wild-type strains but the hyphal mor-
phology was changed. In contrast to MTs in the
wild type, MTs in the kipA deletion strain did not

merge into one place at the apex. This was inter-
preted as a reason why hyphae would meander.
If MTs do meet at one point, they would deliver
the vesicles, which are transported along them at
one place, the Spitzenkorper. Hence, hyphae would
grow straight. If MTs do not merge into one point,
vesicles would be delivered at different places and
arbitrarily a majority could be deposited on the
left, in the middle or on the right side of the hypha.
For instance, if the majority of vesicles were de-
posited asymmetrically at the left, the hypha would
grow to the left. The KipA protein could transport
proteins, which are necessary for temporal anchor-
age of MT at the cortex at a specific point. Those
proteins would be crucial for straight growth and,
because they labelled the end of the cell, they were
named “cell end markers” in Sch. pombe. Examples
of such a protein in fission yeast are Teal and Tipl
(Browning et al. 2003; Busch et al. 2004). However,
MT fixation at the cortex through Teal has not
been shown. Teal may indeed be evolutionarily
conserved among fungi, because a similar protein
has beenlocalized to the growing hyphal tip in Asp.
nidulans (Konzack, Takeshita and Fischer, unpub-
lished data).

Deletion of any kinesin motor (besides bimC)
does not cause severe phenotypes. Interestingly
even a strain in which KinA, KipA and KipB were
deleted was still viable, although hyphal growth
and development were quite severely affected
(Konzack et al. 2005). This shows that kinesins can
substitute for each other to some extent, which was
recently shown nicely in the case of the Unc-104
homologues, Nkin-2 and Nkin-3 from N. crassa.
Whereas Nkin-2 associates with mitochondria
and connects mitochondria with MTs, Nkin-3
was found in the cytoplasm. Surprisingly, after
depletion of Nkin-2, Nkin-3 was upregulated and
also bound to mitochondria and MTs (Fuchs and
Westermann 2005). Homologues of these two mo-
tors do also exist in Asp. nidulans and are currently
being investigated in our laboratory. It appears
that one of them, UncA, plays an important role in
hyphal tip extension whereas the other one, UncB,
is likely to play a role in the nucleus and during
septation (N. Zekert, unpublished data).

As mentioned above, fungi usually contain only
a single dynein protein, although in some basid-
iomycetes the heavy chain is encoded by two genes
(Eshel et al. 1993; Xiang et al. 1994; Straube et al.
2001; Yamamoto and Hiraoka 2003; Martin et al.
2004). Dynein has a crucial role in nuclear mi-
gration but is also implicated in vesicle transport
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(Seiler et al. 1999). Because dynein moves towards
the MT minus end, it is difficult to imagine that it
is directly involved in polarized growth, given that
MTs are mainly oriented with their plus ends to the
membrane. Indeed, deletion of dynein does not
cause an immediate block of hyphal extension and
the impact on colony growth could partly be due to
the lack of nuclei and other organelles, which are
translocated with the help of dynein (Xiang et al.
1994).

Besides the concerted action of the cytoskele-
ton and associated motor proteins to translocate
organelles, cytoplasmic streaming has to be con-
sidered as another mechanism to push forward
the cytoplasm and organelles. Mourifio-Pérez et al.
(2006) showed recently in N. crassa that the MT
array was able to advance as a unit as the hypha
elongates. The basis for this bulk flow has not yet
been resolved.

If MTs play arole in vesicle delivery to the grow-
ing hyphal tip, the question remains how the places
for cell extension are marked. First insights into this
process came from studies in Sch. pombe.

F. Cell End Makers at the Cortex

One of the first proteins which labelled a growing
yeast end was discovered in Sch. pombe in a screen-
ing for polarity mutants. One of the correspond-
ing genes, which was cloned by complementation,
encodes the Teal protein (Mata and Nurse 1997).
The protein is hitchhiking with growing MT ends
and is delivered at the pole, where it associates
with the cortex. The second one, Tea2, encodes
a kinesin-like motor protein (Browning et al. 2000;
Fig. 5.5). It was shown recently that the main mem-
brane anchor, which recruits proteins such as Teal,
is Mod5 (Browning et al. 2003; Snaith and Sawin
2003). This protein is posttranslationally modified
with a prenyl residue, which confers membrane
association. Among the proteins recruited to the
Mod5 anchor is also the formin, For3 (Bretscher
2005; Martin et al. 2005; Martin and Chang 2006).
This protein initiates the growth of actin filaments
away from the growing tip. These cables can be
used as tracks for the vesicles necessary for cell
extension.

Given that the machinery is largely conserved
in filamentous fungi and that the crucial com-
ponent, Mod5, could not yet be identified, the
question remains what targets Mod5 to the mem-
brane at the pole of the cell rather than along the

cell. This points to a key function of the membrane
itself. Indeed, it was proposed some time ago that
sterol-rich lipid rafts exist which may cause asym-
metric distribution of proteins in a membrane
(Grossmann et al. 2006; Hancock 2006). There is
recent evidence that these membrane domains
play a role in the polarized growth of filamentous
fungi (Martin and Konopka 2004); and the lab-
oratory of S. Harris has shown that a ceramide
synthase is important for hyphal morphogenesis
(Li et al. 2006).

Because the installation of the growth machin-
ery at a specific place determines growth direc-
tionality, one would expect that external signals
influence the architecture of proteins. Indeed re-
cently a kinase with such a potential was described
in Asp. nidulans (Li et al. 2006). This kinase has
awell characterized rolein DNA damage response,
but Li et al. (2006) found that deletion also af-
fects the establishment of polarized growth. The
reason appears to lie'in a disorganization of MTs
in the apex, similar to the defect in the kinesin
mutant AkipA (Konzack et al. 2005). Whereas MTs
merge in one point in the wild type, they are dis-
persed in the atmA and the kipA mutants. In both
cases the authors argue that MT-cortex interaction
might be affected. Two further candidates for regu-
lation of protein activity are Pod6 and Cotl, which
were described in N. crassa, although they are dis-
tributed evenly along the hypha and to not show
an accumulation at the growing tip (Seiler et al.
2006).

Fig. 5.5.
Reprinted from Martin and Chang (2003), with permission
from Elsevier

Model of polarized growth in Sch. pombe.
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IV. The Actin Cytoskeleton

A. Organization of the Actin Cytoskeleton

Immunostaining of actin or visualization with
phallloidin derivatives revealed a spot-like distri-
bution of the protein along the cortex in many
fungi with a high concentration at the tip. In
comparison, in Ash. gossypii actin cables are
frequently seen (Schmitz et al. 2006). Meanwhile,
actin fuses to GFP, which allows in vivo studies
of the dynamics of actin (B. Oakley, personal
communication; Fig. 5.1). Furthermore, Pefialva
et al. fused an actin-binding protein with GFP,
which is a nice tool to study actin localization and
behaviour in living Asp. nidulans cells (M. Peifialva,
personal communication). The important role
actin plays in polarized growth becomes obvious
when depolymerizing agents, such as latrunculin
B or cytochalasin, are added to growing hyphae.
Sampson et al. showed that addition of latrunculin
B causes a fast block in hyphal extension (Sampson
and Heath 2005; Fig. 5.6). Likewise, deletion of the
myosin gene, myoA, is lethal (McGoldrick et al.
1995). There are two likely contributions of the
actin cytoskeleton to polarized growth. On the
one hand, the actin-myosin cytoskeleton is used
for vesicle transportation and secretion and thus
the delivery of cell wall components. On the other
hand, cortical proteins are brought into place by
this system in Sac. cerevisiae and guarantee the
proper attachment of MTs to the cortex (Schuyler
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and Pellman 2001b). Because MT attachment
sites required for polarized growth seem to be
very defined in the apical dome (see below), it is
conceivable that the actin cytoskeleton plays a role
at this point as well. However, further experiments
are required to unravel the exact mechanisms.

As another aspect of polarized growth, we
should consider the existence of a Ca?* gradient
along the hypha with a high concentration at the
tip of Phyllosticta ampelicida and N. crassa (Shaw
et al. 2001; Silverman-Gavrila and Lew 2003; see
also Chap. 9 in this volume). In the absence of this
gradient, hyphal polarity is affected (Schmid and
Harold 1988). Although the effect has been known
for a long time, a direct link to the machinery
described above has not emerged yet. One expla-
nation for the role of Ca?* ions is the stimulation
of vesicle fusion with the membrane. The Ca?*
concentration appears to be regulated through
a stretch-activated phospholipase C at the tip,
which catalyses the formation of inositol (1,4,5)-
triphosphate (IP3) and in turn causes the release
of Ca?*from special vesicles (Silverman-Gavrila
and Lew 2002).

B. The Polarisome

A protein complex related to the actin cytoskeleton
is localized at the incipient bud of Sac. cerevisiae
and is named the polarisome (see Chap. 6 in this
volume). This structure is involved in the organi-

Fig.5.6. Effect of anti-microtubule and
anti-actin drugs on polarized growth of
Asp. nidulans. a, ¢ Conidia of a wild-type
strain with a GFP-tagged nucleus. b, d
Germlings of the strain in a, ¢ grown for
10 h at 30 °C in minimal medium (b) or
minimal medium supplemented with
| L5pgml benomyl. Hyphae elongated
and the nucleus divided but nuclei
did not migrate into the germtube.
e-h Germination of a conidium in the
presence of 50 pg/ml cytochalasin A.
Some spores just swelled but did not
form germtubes (e) whereas others
formed short, more or less deformed
hyphae (f-h). Nuclear distribution was
not specifically affected and sometimes
normal (f, h). i Comparison of the
growth rate of hyphal tips in the
presence of the MT drug MBC or the
actin drug latrunculin B (LatB). Taken
from Sampson and Heath (2005), with
permission
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zation of the actin cytoskeleton and its appearance
resembles the Spitzenkorper in filamentous fungi
(Sagot et al. 2002). There is evidence that this pro-
tein complex also exists in filamentous fungi as
structure separate from the Spitzenkérper (Harris
and Momany 2004). The existence of polarisome
components in filamentous fungi was shown first in
Asp. nidulans. Sharpless and Harris demonstrated
that SepA - an orthologue of a key component of
the yeast polarisome, Bnil - colocalize with the
Spitzenkorper (Sharpless and Harris 2002). Sim-
ilarly in Ash. gossypii, a filamentous fungus very
closely related to Sac. cerevisiae (Wendland and
Walther 2005), a homologue of the Sac. cerevisiae
polarisome protein Spa2 was analysed (Knechtle
et al. 2003) and recently also the Bnil orthologue,
AgBnil (Schmitz et al. 2006). Whereas Spa2 is not
essential in Ash. gossypii, but is necessary for fast
polarized growth, deletion of Agbnil causes loss of
polarization and swelling of the cells to a potato-
like appearance. A Spa2 orthologue has been char-
acterized in C. albicans as well and its role stud-
ied during filamentous growth (Zheng et al. 2003).
The protein persistently localize at hyphal tips and
deletion causes defects in polarity establishment.
Recently, Crampin et al. suggested that the polari-
some and the Spitzenkorper are distinct structures
which coexist in hyphae (Sagot et al. 2002; Crampin
et al. 2005; Fig. 5.2, see page 120). Similar results
for Spa2 (SpaA) have been obtained in Asp. nidu-
lans, suggesting that a polarisome or the existence
of polarisome components at the growing hyphal
tip could be a general theme for filamentous fungi
(Virag and Harris 2006b). According to this model,
filamentous fungal cells employ both the MT and
the actin cytoskeleton and, related to these struc-
tural elements, the Spitzenkorper as vesicle supply
centre and the polarisome for actin organization.
The machinery discussed so far describes how
fungi could extend their hyphae, but this picture
does not yet allow any adaptation of the process to
external (e.g. nutrient gradients) or internal signals
(e.g. the stage of the cell cycle). Little is known so
far about the transduction of such signals into e.g.
changes of growth direction, although several reg-
ulatory proteins have been described which influ-
ence polarized growth, probably through an inter-
action with the actin cytoskeleton. The principle of
this possible regulation is best studied in Sac. cere-
visiae (Tcheperegine et al. 2005) and some of the
components appear to be conserved in filamentous
fungi. Among those are members of the Rho and
Rac families, small GTPases which act as molecu-

lar switches (Boyce et al. 2001, 2003, 2005; Guest
et al. 2004; Momany 2005; Virag and Harris 2006a).
However, a detailed analysis for the exact role in
polarized growth in filamentous fungi remains to
be done.

C. Actin-Dependent Motor Proteins

The function of the actin cytoskeleton depends on
the activity of actin-dependent motor proteins, the
myosins. Myosins serve a broad range of cellular
functions and are grouped into 18 different classes.
In Asp. nidulans a class I myosin was identified
and shown to be required for protein secretion and
polarized growth and with an essential role for vi-
ability (McGoldrick et al. 1995). It localizes to the
growing hyphal tip (Yamashita et al. 2000).

Given that myosin motors are involved in vesi-
cle transportation towards the cell cortex and vesi-
cle fusion with the cell membrane, it is very inter-
esting that Asp: nidulans employs a myosin-derived
motor domain for the transportation of class V and
class VI chitin synthases, where the motor domain
is directly fused to the enzyme (Horiuchi et al. 1999;
Takeshita et al. 2005, 2006).

Myosin motor proteins of other classes have
been described, e.g. in Sac. cerevisiae, where a class
V' myosin motor is involved in the inheritance of
peroxisome and other organelles (Bretscher 2003;
Fagarasanu et al. 2006). A second class V myosin is
required for RNA transportation (Bretscher 2003).

D. The swo Mutants and the Establishment
of Polarity

So far we have discussed polar growth in the sense
of maintaining polarized extension by recruiting
the cellular machinery for cell wall assembly to the
tip of an existing hypha. An interesting remain-
ing question is how polarity is established starting
from round spores, such as conidiospores in the
case of Asp. nidulans. This crucial question has
been addressed in A. nidulans by the isolation of
three temperature-sensitive mutants, swoC, swoD
and swoF, in which spores swell at restrictive tem-
perature but do not produce a germ tube (Momany
et al. 1999). The SwoC protein displays homology
to rRNA pseudouridine synthases of yeast and the
role in polarized growth still remains obscure. In
contrast SwoF has a high identity with N-myristoyl
transferases and it is speculated that a polarity de-
terminant could be the substrate for myristolya-
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tion (Shaw et al. 2002). This posttranslational pro-
tein modification is found in proteins which switch
between membrane-bound and cytoplasmic states
(e.g. G protein a-subunits) and could be important
for the localization of cell end markers or other
landmark proteins, as discussed above (Bathnagar
and Gordon 1997). Therefore the identification of
prenylated or myristoylated proteins appears to be
of prime importance for understanding polarity
establishment in filamentous fungi.

V. Conclusions

The past few years have provided many new in-
sights into the role and interplay of actin and the
MT cytoskeleton in the polarized growth of fungi.
It appears that the main function of MTs is to de-
liver vesicles and cell end markers. Especially the
latter function needs much more attention, since
only one putative cell end marker protein has been
identified in Asp. nidulans so far. If homologues
of Sch. pombe cell end markers exist in filamen-
tous fungi, questions remain: what exactly are their
biochemical functions, which downstream events
do they trigger to allow straight hyphal growth
and which upstream regulatory circuits are inte-
grated? The publication of several fungal genome
sequences along with the continuous improvement
of molecular and microscopy techniques promise
a fruitful future for cytoskeletal research in fungi.
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