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Summary

In contrast to most primary metabolism genes, the
genes involved in secondary metabolism and certain
nutrient utilization pathways are clustered in fungi.
Recently a nuclear protein, LaeA, was found to be
required for the transcription of several secondary
metabolite gene clusters in Aspergillus nidulans.
Here we show that LaeA regulation does not extend to
nutrient utilization or the spoC1 sporulation clusters.
One of the secondary metabolite clusters regulated
by LaeA contains the positive regulatory (i.e. aflR)
and biosynthetic genes required for biosynthesis of
sterigmatocystin (ST), a carcinogenic toxin. Analysis
of ST gene cluster expression indicates LaeA regula-
tion of the cluster is location specific as transcription
of genes bordering the ST cluster are unaffected in a
AlaeA mutant and placement of a primary metabolic
gene, argB, in the ST cluster resulted in argB silenc-
ing in the AlaeA background. ST cluster gene expres-
sion was remediated when an additional copy of aflR
was placed outside of the cluster but not when placed
in the cluster. Site-specific mutation of an s-adenosyl
methionine (AdoMet) binding site in LaeA generated a
AlaeA phenotype suggesting the protein to be a
methyltransferase.

Introduction

Filamentous fungi display many unique characteristics
that render them of great interest to the research
community. Among these characteristics is the production
of natural products, or secondary metabolites (Bennett,
1987). These compounds often have obscure or unknown
functions in the producing organism but have tremendous
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importance to humankind. Secondary metabolites display
a broad range of useful antibiotic and immunosuppres-
sant activities as well as less desirable phyto- and myc-
otoxic activities.

These biological properties of natural products have
spurred efforts towards identifying genes involved in their
synthesis. Accumulating data from these studies dispelled
an original premise that fungal metabolic genes would be
scattered throughout the genome. In fact, the hallmark of
secondary metabolite genes, in contrast to most genes
involved in primary metabolism, is that they are clustered
in fungal genomes (Keller and Hohn, 1997). Examples of
secondary metabolite gene clusters are well exemplified
in the genus Aspergillus and include those synthesizing
antibiotics (penicillin, PN), pharmaceuticals (lovastatin)
and toxins (aflatoxin, AF) and sterigmatocystin (ST)
(reviewed in Zhang et al., 2004).

One model of the clustering phenomenon predicts a
need for physical linkage due to a regulatory mecha-
nism(s) (reviewed in Zhang et al., 2004). Several tran-
scription factors, typically Zn(ll)>.Cyss binuclear zinc
cluster and Cys;His; zinc finger proteins, have been found
to regulate secondary metabolite genes. These include
metabolite-specific factors such as AfIR regulating AF and
ST biosynthetic genes (Woloshuk et al., 1994; Fernandes
et al., 1998; Chang et al., 1999; Ehrlich et al., 1999) and
also global transcriptional regulators including AreA (nitro-
gen regulation; Marzluf, 1997; Mihlan et al., 2003), PacC
(pH regulation; Tilburn et al., 1995) and CreA (carbon
catabolite repressor; Dowzer and Kelly, 1991; Espeso and
Penalva, 1992). However, a need for physical grouping of
genes cannot be explained from these studies.

Recently, we identified a nuclear transcriptional regula-
tor, LaeA, of secondary metabolite synthesis through
complementation of a ST biosynthesis mutant in Aspergil-
lus nidulans (Bok and Keller, 2004). Sequence analysis
of LaeA showed no homology to known transcription
factors but rather indicated some similarity to protein
methyltransferases. Loss of LaeA silenced ST and
PN production in A. nidulans, lovastatin production in
Aspergillus terreus and gliotoxin production in Aspergillus
fumigatus leading to the hypothesis that LaeA was
involved in global regulation of secondary metabolite
gene clusters. A role for global regulation of secondary
metabolite gene clusters was further substantiated by
recent microarray analysis of A. nidulans laeA mutants
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Fig. 1. Gene expression analysis of prnD (A), niiA (B) and spoC1C (C) in WT (RDIT2.3) and AlaeA (RJW46.4) strains. A. nidulans WT and
AlaeA strains were cultured in prnD, niaD and spoC1C induction media as described in Experimental procedures. Blots were hybridized with
prnD, a gene in the proline gene cluster, niiA, a gene in the nitrate gene cluster and spoC7C, a gene in the spoC1 sporulation cluster. NI, not
induced; |, induced. 24 and 48 represent hours of growth after switching to GMM solid media. Ethidium bromide-stained rRNA is indicated for

loading.

which highlighted the potential of LaeA to identify novel
clusters and their metabolites (Bok et al., 2006).

Here we present several lines of evidence demonstrat-
ing that LaeA regulation of gene clusters appears specific
to secondary metabolite clusters and, furthermore, is
chromosome location specific. Placement of a primary
metabolic gene, argB, in the ST cluster results in down-
regulation of argB expression in the AlaeA background.
Additionally, an extra copy of afIiR remediates ST biosyn-
thesis in a AlaeA background when placed outside of the
ST cluster but not inside the cluster.

Results
Nutrient utilization clusters are not regulated by LaeA

In addition to gene clusters involved in secondary
metabolism, fungi also possess catabolic pathways for
the utilization of low-molecular-weight nutrients whose
genes are often arranged in clusters. To examine the
possibility that laeA might also regulate nutrient utiliza-
tion cluster genes in A. nidulans, we examined tran-
scripts from the proline (Garcia et al., 2004) and nitrate
(Narendja et al., 2002) gene clusters in conditions
known to induce or repress these genes in the wild-type
(WT) strain (Muro-Pastor et al., 1999; Garcia et al.,
2004). As shown in Fig. 1, representative transcripts
were unaffected in the AlaeA background in both non-
induced and induced conditions for prnD (Fig. 1A) or
niiA (Fig. 1B) gene expression. Additionally, a represen-
tative transcript from the conidiation-specific SpoC1
gene cluster (Gwynne et al., 1984) was also examined
and found not to be regulated by LaeA at 24 h although
there appeared to be a slight increase of expression at
48 h (Fig. 1C).

© 2006 The Authors

Genes bordering the ST cluster are not regulated by
LaeA

Gene expression data of the A. nidulans AlaeA strain
compared with WT showed that selected genes in the ST
cluster (defined by Brown et al., 1996) were downregu-
lated (Bok and Keller, 2004). These findings are extended
by recent microarray work illustrating a similar pattern of
regulation of secondary metabolite gene clusters where
all or nearly all genes within a cluster are down- or upregu-
lated in a AlaeA or overexpression laeA strain, respec-
tively, with little effect on genes outside of the cluster
(Fig. 2A and Bok et al., 2006). Here we present supportive
data of these microarray results by assessing a transcrip-
tional profile of the entire 60 kb ST gene cluster and
flanking regions by Northern analysis in a AlaeA strain
compared with WT (Fig. 2B). Virtually every gene in the
cluster is downregulated in the AlaeA strain compared
with WT. This is contrast to two flanking transcripts that
show little if any difference in regulation in the two strains.
Thus, LaeA regulation is specific to the cluster region and
not border genes.

Remediation of ST gene expression in AlaeA is
dependent on location of an extra copy of aflR

The gene encoding the ST pathway-specific transcription
factor AfIR is located in the ST cluster (Brown et al.,
1996; Fernandes et al., 1998). An extra copy of aflR,
whether in the ST cluster or placed at the trpC locus,
increases ST cluster gene expression and subsequent
ST production (Fig. 3 and data not shown). We investi-
gated whether an extra copy of aflR could remediate
AlaeA silencing. As shown in Fig. 3, aflR and stcU (a ST
biosynthetic gene formerly called verA and regulated by

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 61, 1636—1645



1638 J. W. Bok, D. Noordermeer, S. P. Kale and N. P. Keller

‘syduosuel) Bupjueyy 8yeolpul sSmore paydiey pue ‘aisnjo auab | S ul seuab ajedipul smolle pljos “1alsnjo auab | S ul sauab oneyluAsolq Jo SUOITBO0| BAIJE|a) JO Uoleue|dXa dlewayds )
‘Buipeo) 1o} pajeoipul S| YNY/ pauleis-apiwoig wnipiylg ‘/snjibiadse/bunyuonejouue/npajiw peolqmmmy//:dpy je punoy

sI @ouanbag (2’ L08LNY) 1onpoid HOd Bupjuey-xajs pue (2'928/NV) 1onpoid 4Od Bunjuel-yois e ‘(2'€08/NV—2 28NV Buuenod piwsod e) 600 LL1d ‘9IS ‘vois Uim pazipugAy aiem sjolg
(9661 “f& 18 UMoIg) Jaisn|o auab | S 8y} Jo pus Jayle Jeau sauab olBYIUASOIq | S pazIBloBIBYD OM] 81 NJJS pUB Yais ‘wdl 00E ‘D./€ Y8 U 2/ PUB U 8% ‘U g ‘U gl 10} NIND Bupeys pinby
ul umolb a1em sutesis (4'9yMrd) Yeelv pue (£211ad) LM Ssuginpiu “y "181snjo ausb ay) jJo weansumop pue wealisdn Ajgieipawwl sausb pue Jaisnio auab | S ay) Jo sisAjeue jduosuel] g
"(9002) fe o

0og wouj JaIAes|g wouy uoissiwiad yum pajuliday "uonejouue sousnbas swousb sy} 0] aAne[a) ‘481sn|o 8y} Jo sauab (FIp1 ‘2'Z1S8NY) 1SE| pue (vVipl ‘2'€1S8NY) 1Si1} U} 81edlpul SYSL8ISY
'2'9258NY—2 €1 G8NY uolbal ay; ul A swosowoiyd uo sauab 1o} (1M 0} Yoe|V) soljel uoissaldxa ale umoys “Jaisn|o auab y auouinbaiig] “uolelouue aouanbas awouab ay} 0} aAne[al 4sisn|o
8y} Jo saush (vee ‘2'€28.LNY) iSe| pue (Y108 ‘Z'LZ9ZNY) 1S/} 8U} S1eDIpul SHSUBISY "2'€292NV—2 L 29gNY UoIfal 8y} Ul || 8WOosowoIyd uo sausb 104 (LM O} YEV) Soljel uoissaldxe are
umoys “Jaisnjo auab ulj|Ivluad "uoljejouue aousnbas awouab ay} 0} dAle|al 48)sN|d ay} Jo sauab (g'SZ8ZNY) VoIS PUE (2'708LNV) MOIS dU} 91edIpul S)SUaISY 2 0€8ZNV—2 008ZNY uoibai
ay} Ul 7| dwosowolyd uo sauab 1o} (1A 0} Yaeyy) sonel uoissaldxa ale umoys “1aisn|o auab (1) unshoorewbusls "yee Aq paleinbai sieisnio auab sauijuapl sisAjeue Aeleololy 'y g "Bi4

-
Jaysnpp auab | g <
qifv
= 1 ] -] -] = =] ' ] ] ] - - ] ——f + oL F‘_m..__l
XMAN LSUYOJO NWT M ¢ ITHDAMP 3aD d v =
= S0 &
U. og &
l8)snpp auab y auouinbaua |

Z'L08INY [ X0JS JO Wealisumoq o

1

Z'908LNY | | nas &
o
[=]
g @
ze- M
. o 8

L {00

¢ E0BLNV B 19)SN[o auab uloiuag e

—Z'GZ8INV | Jasnp auab | g

r Pl

rA
= - 0L “
B0 @
2'GZBINY [ | vois —tF—1- %
Z'9Z8LNY [ - _ _ il . ®
2L 8v vZ 2V 2L 8Y VT b g L il i

vae’ 1M l8)snp auab | g 0

© 2006 The Authors

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 61, 1636—1645


http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus
http://www.broad.mit.edu/annotation/fungi/aspergillus

afIR cluster; afiR::trpC

Wild type

aflirR

stcU

afIR cluster; afiR::trpC; AlaeA

H

laeA regulation of gene expression 1639

2 aflR cluster; AlacA

2 afiR cluster

afiR cluster; afIR::trpC 4==Pp44>P PP P4 PP HHOVP Y + >

aflR
2 afIR cluster
2 afiR

afiR

P ACDIO P& PP OO

ST gene cluster

Fig. 3. A. An extra copy of aflR placed outside of the ST cluster can remediate ST gene expression in the AlaeA background. WT
(RDIT2.3);afIR; trpC::aflR (RDNO01.55); aflR; trpC::aflR; AlaeA (RIW54.8), two afIR in the cluster (RDN04.8) and two afIR in the cluster; AlacA
(RDNO5.2) were grown in liquid shaking GMM for 48 h at 37°C, 300 r.p.m. Blots were hybridized with aflR and stcU. Ethidium bromide-stained

rRNA is indicated for loading.

B. Schematic explanation of placement of aflR genes (clear arrows) in the ST gene cluster or at the trpC locus.

aflR; Keller et al., 1994) were expressed in a AlaeA
background when the extra copy of aflR was placed
at the trpC locus but not when placed in the ST
cluster.

A primary metabolism gene is regulated by LaeA when
placed in the ST cluster

To further investigate the possibility that gene regulation
by LaeA was location dependent, we identified a gene
involved in arginine metabolism, argB encoding ornithine
carbamoyltransferase (Berse et al., 1983), that was not
regulated by LaeA when argB was located at its native
locus (Fig. 4, lanes 3 and 4, and Table 1). Strains were
created where argB was removed from its native locus
and placed in the ST cluster using its own promoter.
Using these strains, a comparison of argB mRNA levels
in WT and the AlaeA mutant at 10 h, a time period when
stc genes would not be expressed but optimal for argB
expression, clearly shows argB transcription to be down-
regulated in the AlaeA mutant (Fig. 4, lanes 7 and 8).

© 2006 The Authors

Quantification of argB showed an approximately 1/3-fold
lower expression level in the cluster in the AlaeA back-
ground (Table 1). argB expression remained depressed
in the AlaeA strain at later, ST-inducing time points (e.g.
48 and 72 h, data not shown). This downregulation of
argB expression was reminiscent, although not as
severe, to the silencing of ST gene expression in a
AlaeA background (Figs2 and 3 and Bok and Keller,
2004).

LaeA is a putative methyltransferase

The sequence of LaeA shows it contains conserved
motifs commonly found in protein methyltransferases
(Bok and Keller, 2004). Following procedures used
to identify putative methyltransferase function, the
AdoMet binding motif — LDLGCGTG — was mutated by
replacing the two underscored glycines with alanines
based on a modified Hamahata et al. (1996) method.
Similarly to the AlaeA strain, the strain carrying the
mutation in the AdoMet binding site abolished the

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 61, 1636—1645
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Fig. 4. A. argB expression is repressed in AlaeA when placed in the ST cluster. WT (RDIT2.3), AlaeA (RJW46.4), AlaeA; AstcE::argB;
AargB::trpC (RDN14.2) and AstcE::argB; AargB::trpC (RDN13.1) were grown in liquid shaking GMM for 10 h at 37°C, 300 r.p.m. Experiments
were duplicated. Blots were hybridized with argB and actin. Ethidium bromide-stained rRNA is indicated for loading.

B. Schematic location of argB gene (clear arrow) in ST gene cluster.

expression of aflR and stcU required for ST production
(Fig. 5). This result supports LaeA as a likely methyl-
transferase.

Discussion

The cluster arrangement of fungal genes involved in a
unifying metabolic or developmental process has elicited
much discussion on origination and maintenance of such
clustering (reviewed in Zhang et al., 2004). No one model
can explain the finding of such varied gene clusters as
nutrient utilization, mating type, pathogenicity islands and
secondary metabolism in the fungal genome. However,

Table 1. Quantification of argB expression in Fig. 4.

the identification of LaeA, a nuclear protein shown to
transcriptionally activate several secondary metabolite
gene clusters in Aspergillus spp. (Bok and Keller, 2004),
suggested a possible global mechanism involved in
cluster gene regulation. Here we present evidence indi-
cating that LaeA regulation does not extend to nutrient
utilization clusters nor the SpoC1 conidiation-specific
cluster. Furthermore, the mechanism of LaeA regulation
of gene expression appears coupled to chromosome
location, as moving genes in or out of the ST cluster (a
cluster known to be regulated by LaeA) directly correlated
to gain or loss of transcriptional regulation mediated by
LaeA.

Lanes argB (area volume) Actin (area volume) argBJactin
WT 112683 49124 2.195
WT 100108 52504 1.907
AlaeA 105590 54865 1.925
AlaeA 110929 57719 1.922
AargB::trpC; AstcE::argB 85274 51562 1.654
AargB::trpC; AstcE::argB 83532 53891 1.550
AargB::trpC; AstcE::argB; AlaeA 55440 52164 1.063
AargB::trpC; AstcE::argB; AlacA 60682 54713 1.109

Transcripts were calibrated by ImageQuantTLv 2005 (Amersham Bioscience).

© 2006 The Authors
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Fig. 5. Mutation of the AdoMet-binding motif in LaeA presents a
AlaeA transcription phenotype. WT (FGSC26), AlacA (RJW40.4),
AlaeA; trpC::laeA (TJW63.56) and AlaeA; trpC::laeAr*Met (TJWE0)
were grown in liquid shaking GMM for 48 h at 37°C, 300 r.p.m.
Mutations were introduced in the s-adenosyl methionine (AdoMet)
binding site of LaeA (DLGCGTG — DLACATG) based on
previously publication (Hamahata et al., 1996) to inactivate
methyltransferase activity. Blots were hybridized with laeA, afiR and
stcU. Ethidium bromide-stained rRNA is indicated for loading.

To address our hypothesis that laeA is specific to sec-
ondary metabolite gene cluster regulation, we examined
the effects of loss of /aeA on expression of a representa-
tive gene from two well-characterized primary metabolite
gene clusters, the proline and nitrate utilization gene
clusters. Our methods were based on well-established
conditions that result in inductive or non-inductive condi-
tions for these two clusters as described in Garcia et al.
(2004) and Muro-Pastor et al. (1999) respectively. Loss of
laeA appeared to have neither an effect on suppressing
expression in induced conditions nor activating expres-
sion in the non-induced conditions (Fig. 1A and B). We
also examined spoC1C expression in AlaeA as compared
with WT following conditions described for spoC1 cluster
expression (Law and Timberlake, 1980; Gwynne et al.,
1984). The spoC1 cluster contains genes expressed
during early conidiation events, a time frame (24 h) when
most secondary metabolites are not expressed. As show
in Fig. 1C, spoC1C expression was similar in both strains
at 24 h although there did appear to be a slight increase in
spoC1C expression in AlaeA as compared with WT at
48 h. Together, these results indicate that /laeA has little
impact on gene expression in these non-secondary
metabolite gene clusters. This conclusion is supported by
recent microarray analysis of laeA mutants compared with
WT (Bok et al., 2006).

To further investigate factors affecting LaeA regulation
of secondary metabolite gene clusters, we focused on
gene regulation in the ST cluster. This approximately
60 kb cluster is bound on one side by sitcA, encoding a

© 2006 The Authors
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polyketide synthase required for generating the ST carbon
backbone (Yu and Leonard, 1995), and stcW, encoding a
flavin-requiring monooxygenase (Keller et al., 2000), as
well as the uncharacterized stcX (Brown et al., 1996). The
sixth gene in the cluster is aflR, encoding a positive acting
Zn(I)2Cyss transcription factor required for the transcrip-
tion of the biosynthetic stc genes (Fernandes et al., 1998).
An examination of the expression of most genes in the ST
cluster along with two uncharacterized border genes on
either side of stcA and stcX, respectively, showed LaeA
regulation was limited to the characterized ST cluster
(Fig. 2 and Bok et al., 2006). This expression profile was
similar to that of an aflR disruption strain (Yu et al., 1996).
Thus, theoretically, LaeA regulation of the ST cluster could
be entirely mediated by aflR suppression. Our finding that
an extra copy of aflR could remediate the AlaeA pheno-
type, but only when placed outside of the ST cluster
(Fig. 3), suggests that cluster location of aflR may play the
most important role in mediating LaeA regulation for ST
cluster expression. This finding also raises questions on
LaeA function. If our assumption is that LaeA activity is
required for accessibility to ST cluster chromatin, it is not
intuitive that a trpC-located aflR should rescue ST gene
expression in a AlaeA background. However, unlike the
loss of afiR, loss of laeA does not result in a complete null
ST phenotype. Depending on what media or temperature
the fungus is grown, there is some ST production in the
laeA mutant (data not shown). We speculate that the ST
cluster in the AlaeA strain is not entirely closed and,
should there be sufficient aflR expression (such as at the
trpC locus), the resulting gene product would be able to
activate ST gene expression in the AlaeA mutant. Our
results are reminiscent to findings in Saccharomyces cer-
evisiae where it was shown that overexpression of the
transcription factor PPR1 can suppress the silencing of an
ura3 gene placed at the telomere (Aparicio and
Gottschling, 1994). However, we currently do not know
whether the mechanism underlying these results is
related in these two fungi.

In earlier studies we found both the ST and PN clusters
were regulated by LaeA (Bok and Keller, 2004; Bok et al.,
2006; Fig. 2A). A significant difference in these clusters,
one pertinent to our observations with AflR and ST
regulation, is that PENR1, the HAP-like transcriptional
complex regulating PN biosynthesis, is not located in the
PN cluster. It is also involved in expression of numerous
non-PN genes (Litzka et al., 1998; Brakhage et al., 1999).
Interestingly penR1 was not regulated by LaeA based on
our microarray analysis (Bok et al., 2006). Therefore,
neither presence of a cluster-located transcription factor
nor transcriptional regulation of such a factor is a require-
ment for LaeA control of secondary metabolite gene
cluster expression. We suggest that LaeA exerts another
layer of regulation on biosynthetic genes within a cluster

Journal compilation © 2006 Blackwell Publishing Ltd, Molecular Microbiology, 61, 1636—1645



1642 J. W. Bok, D. Noordermeer, S. P. Kale and N. P. Keller

in addition to the regulation by the pathway-specific
regulator. For example, a study by Liang et al. (1997)
showed that the expression of ver-1, an orthologue of
A. nidulans stcU and involved in AF biosynthesis in
Aspergillus parasiticus, varied depending on location of
this gene in the genome. Variation in ver-1 expression as
described by Liang et al. (1997) may be in part due to loss
of regulation by LaeA.

The importance of chromosome location in LaeA regu-
lation of gene expression was also supported by the argB
expression profile. Figure 4 clearly shows argB expres-
sion is LaeA mediated when placed in the ST cluster.
Although not silenced to the same degree as stc genes, it
is nevertheless downregulated in the AlaeA background
when placed in the ST cluster. We found this downregu-
lation both at an early time point, 10 h, when ST genes are
not expressed and at late, ST-compatible time points
(48 h; data not shown). This experiment also supports a
non-AflR mechanism involved in LaeA control of gene
expression in the ST cluster region of the chromosome as
argB is not regulated by AfIR, nor is aflR expressed at
10 h.

Previous results showed LaeA to be a nuclear-located
protein with motifs most similar to those of protein meth-
yltransferases (Hamahata et al., 1996; Bok and Keller,
2004), proteins involved in gene regulation through modi-
fication of chromatin structure (Peterson and Laniel,
2004). Here we show that site-specific mutation of the
conserved AdoMet-binding motif in LaeA generated
a strain with an identical phenotype to the loss of
function allele (Fig.5), thus supporting LaeA as a
methyltransferase. Our current efforts are directed
towards the possibility that LaeA could be involved in
methylation changes of histone proteins and/or their asso-
ciated activating complexes, and by these means affects
transcription of select secondary metabolite gene
clusters.

Experimental procedures
Plasmid construction

Plasmids were constructed using standard techniques. Turbo
(Stratagene) was used for PCR reactions. Primers for PCR
and probes are listed in Table 2. Plasmid pDNO2 was con-
structed by ligation of a 2.5 kb Apal fragment, containing the
aflR gene and 400 bp of the native promoter, into pPK1, a
pBluescript SK-based plasmid containing a 1.9 kb blunt end
ligated Sspl fragment containing argB. Plasmid pJW20 was
constructed by ligation of the 2.5 kb Apal fragment containing
afiR into pSH96, a pBluescript SK-based plasmid containing
a 1.8 kb blunt end-ligated Sacl-EcoRI fragment containing
the 5’-end of the trpC gene. pJW63.4 was constructed using
double-joint PCR reactions (Yu et al, 2004) to introduce
mutations in the s-adenosyl methionine (AdoMet) binding site
of LaeA (DLGCGTG — DLACATG) based on a previous

Table 2. Primers.

Primer Sequence

ActF 5-TCTCGTTATCGACAATGGTTG-3'

ActR 5-GAGAACGGCCTGAATAGAGA-3’

Fmet 5-CCTCGATCGCCCAGATACCAGTGGCACAGGC
TAGGTCCAGAAACCGGCCG-3

Rmet 5’-AAGGCCGGTTTCTGGACCTAGCCTGTGCCAC
TGGTATCTGGGCGATCGAG-3’

NiiF 5-CGTGTAGGTCTGTCGTCGTA-3’

NiiR 5-CCATCTCAATACCAGGAGCAATG-3’

PrnF 5-TCTTTCCTCCGTTCTCCGCT-3’

PrnR 5-CGTCGCAACTCAAGCAATAGA-3’

SpoC1CF 5-ACCTAAACAATAAGCCGACTACAG-3’

SpoC1CR 5’-CACACTCAATCTCATCACCAGAC-3’

5’flankingF 5-TACGGGTTCTCGAAGCAGCGC-3’

5’flankingR 5-ACCAGTTCAAAGGTCTGTAAGCC-3’

3'flankingF 5-AGCATCGCGATGAACGAGCCC-3’

3’flankingR 5-AATTGACCAAACAATCGCCAGGG-3

stcAF 5’-ATGGCCAGTCACGCTGAGCCA-3

stcAR 5-ATGTTGTCAATCTGCGCAGGCTT-3'

publication (Hamahata et al., 1996) to inactivate methyltrans-
ferase activity. To introduce mutations in the AdoMet binding
site, a 1.8 kb 5" fragment of laeA was amplified by using two
primers, LAE1 (Bok and Keller, 2004) and Rmet. Another two
primers, Fmet and LAE2 (Bok and Keller, 2004), created a
2 kb 3’ PCR product of /laeA. These two purified fragments
were mixed and a 3 kb fragment was amplified by two nested
primers, Mt1 and OER (Bok and Keller, 2004), containing
Hindlll restriction enzyme sites at both ends, to yield a final
3 kb fragment containing the entire modified /aeA gene. This
3 kb fragment was subcloned into the Hindlll site of pSH96
(Wieser and Adams, 1995) to created pJW63.4.

Nucleic acid analysis

DNA extractions from fungal and bacterial strains, restriction
enzyme digestion, gel electrophoresis, blotting, hybridization
and probe preparation were performed according to standard
methods (Sambrook et al., 1989; Shimizu and Keller, 2001).
Total RNA was isolated from lyophilized mycelia using Trizol
reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturers’ instructions. RNA blots were hybridized with a
1.3 kb EcoRV—Xhol afiR fragment from pJW20, a 2 kb PCR
product by primers stcAF and stcAR, a 0.7 kb Sacll-Kpnl
fragment from pRB7 containing the stcU coding region (Bok
and Keller, 2004), a 1.0 kb Sacl-Sphl argB fragment from
pDNO02, a 3 kb /aeA fragment from pJW45.4 (Bok and Keller,
2004), a 0.9 kb PCR product by primers NiiF and NiiR for
niiA, a 0.4 kb PCR product by primers PrnF and PrnR for
prmD, a 1kb PCR product by primers SpoC1CF and
SpoC1CR for spoC1 and a 0.4kb PCR product by primers
ActF and ActR for the actin gene. Also A. nidulans cosmid
pL11C09, which contains most of the ST gene cluster (Brown
et al.,, 1996), was used as a probe for mRNA expression.
Flanking transcripts of the ST gene cluster were probed with
a 2kb PCR product amplified by primers 5flankingF and
5flankingR for a transcript upstream of stcA (http://www.
broad.mit.edu/annotation/fungi/aspergillus/, contig1.132,
243110-245278 bp), and with a 3 kb PCR product amplified
by primers 3’flankingF and 3’flankingR for a transcript down-
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Table 3. Aspergillus nidulans strains used for this study.
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Strain Genotype Source

FGSC26 biA1, veAl FGSC

RAMB38 biA1; methG1; veAt; trpC801, AafiR::argB Bergh

RDIT2.3 veAl Tsitsigiannis
RDIT30.23 argB2; methG1; veAt; trpC801 Tsitsigiannis
RDIT30.34 methG1; pyrG89; veA1; trpC801 Tsitsigiannis
RDIT44.35 biA1; pabaA4; pyrG89; veAl; trpC801 Tsitsigiannis
RDNO01.55 veAT; trpC::aflR This study

RDNO02.21 argB2; veA1; AaflR::argB; trpC::aflR This study

RDNO04.8 aflR::argB::aflR; AargB::trpC; trpC801; veA1 This study

RDNO05.2 methG1; AargB::trpC; veAl; aflR::argB::aflR; AlaeA::methG, trpC801 This study

RDN13.1 AargB::trpC; veA1; AstcE::argB; trpC801 This study

RDN14.2 methG1; AargB::trpC; veAT; AstcE::argB; AlaeA::methG, trpC801 This study

RJH256 biA1; argB2; veA1; AafiR::argB; trpC801 Hicks

RJW3 pyrG89, wA3; pyroA4; AstcE::argB; veAl; trpC801 This study

RJW31 biA1; wA3; argB2; AstcE::argB, veAl This study

RJW33.2 methG1; wA3; pyroA4; argB2; veA1; AstcE::argB, trpC801, AlaeA::methG Bok and Keller (2004)
RJW40.4 biA; methG1; veA1; AlaeA::methG Bok and Keller (2004)
RJW46.4 methG1; veAl; AlaeA::methG Bok and Keller (2004)
RJW54.8 methG1; veA1; AlaeA::methG, trpC::aflR This study

RJW55.8 methG1; argB2; veA1; AaflR::argB; AlaeA::methG, trpC::aflR This study

RMSO011 pabaA1, yA2; veAl; AargB::trpC; trpC801 Stringer et al. (1991)
TDNO02.3 pabaA1, yA2; veAl; AargB::trpC; aflR::argB::aflR; trpC801 This study

TJW35.5 biA1, methG1; wA3; argB2; veAl; AstcE::argB; AlaeA::methG Bok and Keller (2004)
TJW57.9 methG1, wA3; pyroA4; argB2; veA1; AstcE::argB; AlaeA::methG, trpC::aflR This study

TJW60 biA1; wA3; methG1; argB2; veA1; AstcE::argB, AlaeA::methG; trpC::lagArMe! This study

TJW63.56 biA1; wA3; methG1; argB2; veA1; AstcE::argB, AlaeA::methG; trpC::laeA This study

FGSC, Fungal Genetic Stock Center.

stream of stcX (http://www.broad.mit.edu/annotation/fungi/
aspergillus/, contig1.132, 180034—182950 bp).

Fungal strains and culture conditions

The fungal strains used in these experiments are shown in
Table 3. All strains were maintained as glycerol stocks and
were grown at 37°C on solid minimal media plates or in
minimal media liquid shake cultures both containing 1%
glucose (GMM) as the sole carbon source (Shimizu and
Keller, 2001). For the expression of argB, 50 ml of GMM was
inoculated with 107 conidia per ml and incubated for 10 h at
37°C, 300 r.p.m. for each fungal strain analysed. For the
expression of spoC1C, the method of Law and Timberlake
(1980) was followed for induction of conidiophore formation.
Briefly, 50 ml of GMM was inoculated with 108 conidia mI~" of
WT or AlaeA and incubated for 20 h. Mycelia were harvested
by filtration. To induce conidiation, the unwashed mycelia
were placed on 9 cm Whatman no. 1 paper on top of solid
GMM and incubated at 37°C. Conidia and mycelium were
harvested at 24 h and 48 h for mRNA extraction. For niiA
expression, the method of Muro-Pastor et al. (1999) was
followed. Briefly, 100 ml GMM, substituting 5 mM urea (a
non-induced, derepressed condition for niiA expression) for
nitrate, was inoculated with 10° conidia per ml of WT or
AlaeA. To obtain enough mycelia, four flasks of WT and four
flasks of AlaeA were grown. After incubating for 7 h at 37°C at
300 r.p.m., the mycelia were harvested and washed and incu-
bated in GMM-no nitrogen source medium for 20 min. The
mycelia were then transferred to flasks containing either
GMM +5mM ammonium D-(+) tartarate (non-induced,

© 2006 The Authors

repressed conditions) or GMM + 10 mM NaNO; (induced,
derepressed conditions). The flasks were incubated for
another 2 h in these media after which the mycelia were
filtered, washed and used for RNA isolation. A method by
Garcia et al. (2004) was followed for prnD experiments. Here
10° conidia per ml of WT and AlaeA were inoculated in 100 ml
of FMM (minimal medium containing 0.1% fructose instead of
glucose) containing 5 mM urea as the nitrogen source. To
obtain enough mycelia, four flasks of WT and four flasks of
AlaeA were grown. After incubating for 8 h at 37°C at 300 r.
p.m., the mycelia were harvested, washed and transferred to
flasks containing either MMG + 20 mM ammonium D-(+) tar-
tarate (non-induced, repressed conditions) or MMF + 5 mM
urea + 20 mM L-proline (induced, derepressed conditions).
The flasks were incubated for another 2 h in these media
after which the mycelia were filtered, washed and used for
RNA isolation. For other expression experiments, we fol-
lowed our previously published culture method (Shimizu and
Keller, 2001). Sexual crosses were performed according to
Pontecorvo et al. (1953).

Recombinant DNA techniques

Fungal transformations were performed accordingly to stan-
dard techniques (Miller et al., 1985), with some minor modi-
fications where protoplasts were embedded in minimal media
top agar instead of spread by a glass rod on solid media.
To examine location-dependent argB expression, strain
TDNO02.3 was constructed by transformation of strain
RMS011 with plasmid pDN02, and strain TIW57.9 was con-
structed by transformation of strain RJW33.2 with plasmid
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pJW20. To identify a putative methyltransferase function of
laeA, strain TIW60 was constructed by transformation of
strain RUW32.2 with plasmid pJW63.4. To examine location
effect of aflR, RDN01.55 and RJW54.8 were created by
sexual cross between TJW57.9 and RDIT44.35. RDN04.8
and RDNO05.2 were created by sexual crosses between
TDNO02.3 and RJW33.2, and between TDNO02.3 and
RDIT30.23 respectively. Genetic backgrounds of created
strains were confirmed by Southern blot analyses and/or
PCR analyses.
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