Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans

Raphael Manck¹, Yuji Ishitsuka², Saturnino Herrero¹, Norio Takeshita¹,³, G. Ulrich Nienhaus² and Reinhard Fischer¹,*

ABSTRACT

The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an Eba-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.

KEY WORDS: Aspergillus, Polarity, Dynein, Kar9, APC

INTRODUCTION

Polarity establishment and maintenance are essential mechanisms conserved from simple unicellular organisms to higher eukaryotes. Polarity plays an important role in various biological processes, such as embryogenesis, organogenesis, cell morphogenesis and asymmetric cell division. Neurons are among the most polarized cells, and the actin and microtubule (MT) cytoskeletons play essential roles in the correct guidance of axons (Dent et al., 2011). Simple models for polarized growth are the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but also filamentous fungi such as Aspergillus nidulans or Neurospora crassa (Arkowitz, 2011; Casamayor and Snyder, 2002; Peñalva, 2010; Riquelme, 2013; Takeshita et al., 2014). In filamentous fungi, polarized growth is the dominant growth form and requires continuous extension of the hyphal tip with massive transport of enzymes, and cell wall and plasma membrane components. The actin and MT cytoskeletons, along with their respective motor and other associated proteins, play crucial roles in these transport processes and are also required for establishing and maintaining the polarity axis (Fischer et al., 2008; Takeshita et al., 2014). MTs emerge from spindle pole bodies and septal MTOCs and span the entire hyphae, whereas the actin cytoskeleton is organized very differently (Konzack et al., 2005). Actin patches are found along the hyphae at the cortex, and actin filaments emerge mainly from the hyphal tip and are restricted to a short area behind the tip (Upadhyay and Shaw, 2008). The two cytoskeletons are linked through a class of cortical proteins that are restricted to the apex. They are called cell-end marker proteins and were discovered in S. pombe (Snell and Nurse, 1994). Here, one key protein is Mod5, which is prenylated and serves as an anchor for other proteins in the apical membrane (Snaith and Sawin, 2003). It recruits other cell-end marker proteins, such as Tea1 and ultimately the formin For3, which polymerizes actin cables (Feierbach and Chang, 2001). Tea1 is associated with MT plus ends and is delivered through growing MTs (Mata and Nurse, 1997). Hence the MT cytoskeleton organizes the actin cytoskeleton. In A. nidulans, cell-end markers are essentially conserved, although sequence similarities are in general very low (Higashitsuji et al., 2009; Takeshita et al., 2008). In contrast to S. pombe, MTs converge at one prominent spot at the hyphal tip in A. nidulans. This convergence depends on TeaA (Tea1) and TeaR (Mod5) (Takeshita et al., 2008). In addition, it has been shown that the MT polymerase AlpA (XMAP215) interacts with TeaA at the cortex and that polymerase activity is controlled by AlpA (Takeshita et al., 2013). However, the exact mechanism of how MTs converge into a single spot remains unclear. One could hypothesize that growing MTs follow the dome-shaped hyphal apex passively, although this would not explain the observed misguided MTs in the absence of TeaA or TeaR. An alternative mechanism would involve active MT capture and guidance. This hypothesis is based on a model in S. cerevisiae.

In S. cerevisiae, polarized growth is restricted to a short period of the cell cycle (Martin and Arkowitz, 2014). When the yeast cell forms a daughter bud, the nucleus divides and migrates to the budding neck. This migration depends on astral MTs, which contact the cortex and are subsequently pulled by dynein. In addition to the so-called dynein pathway, a second pathway has been described, which ensures proper spindle alignment and nuclear migration during mitosis (Liakopoulos et al., 2003; Miller and Rose, 1998). The key component of this pathway is Kar9. It localizes initially to the spindle pole body (SPB) but remains only at the SPB that faces the daughter cell. This asymmetry involves multiple phosphorylations of Kar9 by the human CLIP-170 ortholog Bik1 and the Clb4–Cdc28 complex at the SPB, which remains in the mother cell (Liakopoulos et al., 2003; Maekawa et al., 2003; Moore and Miller, 2007; Pereira et al., 2001). After loading Kar9 onto the MT, it is transported to the MT plus end in a Bim1-dependent manner, which classifies Kar9 as a MT-plus-end associated protein.
(+TIP) (Akhmanova and Steinmetz, 2010; Liakopoulos et al., 2003; Miller et al., 2000). Once a MT plus end reaches the actin cables, which emerge from the bud tip, Kar9 interacts with the class-V myosin Myo2, which in turn pulls Kar9, the attached MT and the SPB along an actin cable into the daughter cell (Beach et al., 2000; Hwang et al., 2003; Lee et al., 2000; Liakopoulos et al., 2003; Miller et al., 2000; Yin et al., 2000); hence, actin cables guide MTs towards the bud tip.

In this work, we describe MT guiding protein A (MigA) as the first ortholog of Kar9 in filamentous fungi. *A. nidulans* MigA is involved in mitotic spindle positioning, and also in MT capture at the hyphal tip. Furthermore, it is required for cell-end marker positioning and, thereby, for the organization of the MT and actin cytoskeletons during polar growth.

RESULTS

Identification of a Kar9 ortholog in *A. nidulans*

The *A. nidulans* database (www.aspgd.org) was searched for proteins with sequence similarity to *S. cerevisiae* Kar9 (Cerqueira et al., 2013). The best candidate was AN2101, although the similarity was restricted to a short stretch and the Expect (E)-value was only 3×10^{-6} and the overall identity was only 22%. Nevertheless, here we present strong evidence that the two proteins are orthologs. Because the abbreviation kar is already used in *A. nidulans*, we named the gene *migA*, referring to the proposed function in MT guidance (see below). The *migA* gene does not contain introns (RNaseq data); the derived protein comprises 1010 amino acids, with a calculated molecular mass of 109.75 kDa and an isoelectric point of 9.01 (Fig. 1A). Analysis using the Pfam database revealed similarities of the region ranging from amino acid 300 to 1004 to the Kar9 protein family, with a bit score of 683.3 and an E-value of 2.4×10^{-205} (Finn et al., 2014). Further analyses revealed other conserved structural features between the two proteins (Fig. 1A). Two putative dimeric coiled-coil domains were identified, one between amino acids 573 and 607, and another one between amino acids 692 and 719, by using the MultiCoil algorithm with a maximum search window length of 28 and a P-score of 0.97 and 0.59, respectively (Wolf et al., 1997). Within the alkaline C-terminus of MigA, a SxIP motif (where x is any amino acid) was found at position 873 to 876 (STIP). Such a motif is also present in Kar9, APC and other proteins that are known to bind to end-binding protein 1 (Eh1) and, hence, is a +TIP localization signal (as reviewed by Honnappa et al., 2009). Phosphorylation sites that are essential for asymmetric loading onto SPBs in *S. cerevisiae*, as described by Liakopoulos et al. (2003), were not found in MigA; however, it does possess numerous other predicted phosphorylation sites (data not shown). The MigA protein is well conserved in other filamentous ascomycetes. For instance, *A. nidulans* MigA shares 59% sequence identity with its ortholog in *Penicillium chrysogenum*, and 43% with that in *Neurospora crassa* (Fig. 1B, supplementary material Fig. S1A).

Deletion of migA partially phenocopies mutations in cell-end marker genes

To characterize the function of MigA *in vivo*, a migA-null mutant was created (Fig. 2A, supplementary material Fig. S2A–C). The migA knockout cassette was obtained from the Fungal Genetics Stock Center (Kansas State University, Manhattan, KS) and transformed into the *nkuA*-deletion strain TN02A3. To ensure that the phenotypes are not caused by the *nkuA* deletion, we back-crossed a Δ*migA* strain to an *A. nidulans* wild-type strain (SRF201) and selected a Δ*migA, nkuA*− strain. Colonies of all three strains grew as fast as wild-type colonies (Fig. 2A). However, hyphal morphology was affected and resembled the phenotype of mutants lacking the kinesin-VII KipA or cell-end markers, such as TeaA or TeaR (Higashitsuji et al., 2009; Konzack et al., 2005; Takeshita et al., 2008). Deletion mutants lacking TeaA, TeaR or KipA failed to

![Fig. 1. Scheme of the MigA protein and similarity analysis of MigA orthologs.](image-url)
maintain the internal polarity axis, resulting in curved or zig-zag growth patterns, which was most apparent in medium with 2% glucose as the carbon source. Furthermore, tip splitting could be observed (Fig. 2A,B,D). In addition, polarity establishment, as required during the germination of conidiospores, was affected. The angle of emerging secondary hyphae was significantly different from that in wild type, and a third germ tube occurred more frequently. This resembled the effects of loss of the cell-end marker TeaA (Fig. 2B,C).

MigA localizes to mitotic spindles and facilitates contact between astral MTs and cortical ApsA

To determine the localization of MigA, enhanced green fluorescent protein (GFP) was fused to the C-terminus of MigA and expressed...
under the control of the endogenous promoter. MigA–eGFP localized along the mitotic spindle, including SPBs (Fig. 3A). In addition, a small cluster was found at septa (data not shown). This suggests that MigA is present at septal and nuclear MTOCs. The localization of the protein appeared to be very dynamic, and the signal intensities at the SPBs changed over time before they appeared at astral MTs (Fig. 3A, supplementary material Movie 1). When cells were treated with benomyl, MigA localized in clusters at the plasma membrane (supplementary material Fig. S3A). To test whether MigA interacts with the cortical protein ApsA (Fig. 3D, supplementary material Fig. S3B) (Fischer and Timberlake, 1995) in the same fashion that S. cerevisiae Kar9 interacts with Num1 (Farkasovsky and Kuntzel, 2001), bimolecular fluorescence complementation (BiFC) and yeast two-hybrid analyses were performed. BiFC analysis showed an interaction of the two proteins at the plasma membrane throughout the fungal hyphal cortex in early stages of mitosis (supplementary material Movie 2), and thus we reasoned that MigA, like Kar9 in S. cerevisiae, has a role in positioning of the nucleus during the early stages of mitosis. This is consistent with the fact that ΔmigA strains do not show a nuclear misdistribution phenotype, whereas ΔapsA strains do (Fig. 3F).

MigA associates with growing and retracting MT plus ends in an EbA-dependent manner

Time-lapse analyses of MigA–eGFP revealed that it is transported to the hyphal tip in interphase cells (Fig. 4A–C). This behavior resembles that of the MT-plus-end-associated motor protein KipA. The velocity of KipA is 9.5±1.8 µm/min (Schunck et al., 2011), whereas the growth rate of MT is 13±3.1 µm/min (Han et al., 2001). MigA comets were imaged in vivo, and velocities of 11.9±9.5 µm/min were calculated, thus resembling the velocities of KipA and growing MTs (Fig. 4C). Dual labeling of TubA and MigA revealed that MigA is loaded onto the SPBs and, from there, actively transported towards the MT plus end (Fig. 4B, supplementary material Movie 3). Overexpression of eGFP–MigA led to complete decoration of cytoplasmic MTs (supplementary material Fig. S4A, Movie 4). In addition to eGFP fusions, we generated a fusion with photoconvertible mEosFPthermo (Wiedenmann et al., 2004, 2011), which allows for analysis using super-resolution microscopy, such as photoactivated localization microscopy (PALM; for a review of super-resolution microscopy, see Patterson et al., 2010). Super-resolution single-particle-tracking analysis of MigA–mEosFPthermo (MigA tagged at the C-terminus) clusters provided essentially background-free images and showed localization of single MigA clusters at growing and retracting MTs (Fig. 4D, supplementary material Movie 5).

Furthermore, we investigated the potential roles of the Kar9 domain and the conserved N-terminal stretch of MigA. Deletion of the N-terminal stretch did not alter the localization and dynamics of the protein, whereas deletion of the Kar9 domain affected both. The corresponding protein was observed mainly in the cytoplasm and as accumulations in a subapical region that resembled the endocytic collar (Fig. 4E,F). Thus, the Kar9 domain is required for association with MTs.

In order to test whether MT plus end association of MigA depends on the A. nidulans Eb1 ortholog EbA (Zeng et al., 2014), BiFC assays were performed to determine whether they interact. A strong signal along short and long filamentous structures was observed in hyphae. The features observed in the images resembled MTs, which suggests that MigA and EbA interact at the MT lattice (Fig. 5A). Other MT-associated proteins, such as KipA and AlpA, did not interact with MigA (data not shown) (Enke et al., 2007; Zekert and Fischer, 2009). The EbA–MigA interaction was confirmed in a yeast-two-hybrid assay (Fig. 5B). The predicted SxIP motif at position 873–876 in MigA was not essential for the MigA–EbA interaction (Fig. 5B). Surprisingly, the SxIP domain was crucial for the transport of MigA in vivo and accumulated in non-motile clusters in the hyphae (Fig. 5C).

In order to address the question whether MigA is loaded onto MT in an EbA-dependent manner, we analyzed MigA–eGFP in a ΔebA-deletion strain. In contrast to KipA (Zeng et al., 2014), for example, MigA still localized to MTs. However, MTs were more uniformly decorated, and MT plus end accumulation was abolished, although this did not completely phenocopy a deletion of the SxIP motif (Fig. 5C–E). We also observed MigA at septa and uniformly decorated mitotic spindles (data not shown), suggesting EbA-independent binding of MigA to septa, mitotic spindles, SPBs and MTs. Direct interaction of MigA and TubA was further proven with...
BiFC and yeast two-hybrid assays (Fig. 5B,F). In this series of experiments, strong self-interaction of MigA was observed in the yeast two-hybrid assay (Fig. 5B).

MigA plays a role in cell-end marker positioning and MT convergence

Because the phenotype of ΔmigA strains resembled that of null mutations of cell-end marker mutants, we anticipated that MigA is involved in cell-end marker positioning. To test this, tagged cell-end markers eGFP–TeaR (N-terminally tagged) and mRFP1.2–TeaA, expressed from their natural promoters, were analyzed in ΔmigA and wild-type strains (Fig. 6A). Indeed, the number of hyphae with mispositioned TeaA or TeaR was higher than in wild type. Next, we analyzed the direct interaction of MigA with cell-end marker proteins using the BiFC and yeast two-hybrid assays. TeaA did interact, whereas TeaC and TeaR did not (Fig. 6B,C, Fig. 3C; BiFC assay, data for MigA–TeaC and MigA–TeaR interactions are not shown). The interaction of MigA and TeaA was restricted to the hyphal tip, and occasionally to septa. We did not observe transport of any assembled BiFC complexes, which suggests that the interaction only takes place at the tip. Furthermore, we observed a strong dominant-negative phenotype on polarized growth in these
Fig. 3. Localization of MigA and its role in mitotic spindle dynamics. (A) Dynamic localization of MigA-eGFP at both spindle poles (arrowheads), along the mitotic spindle and on astral MTs. Hyphae of S. cerevisiae (migA::eGFP, aicA::mCherry::tubA) were grown as described (frame accumulation, 2; line average, 16; AOTF 514, 25%; gain, 900 V; offset, -0.2; scan speed, 1000 Hz; emission bandwidth, 522 nm–648 nm; maximum projection of a 5.16 μm z-stack). Scale bar: 5 μm. (B) Yeast two-hybrid analysis of MigA and ApsA. Strains expressing different versions of MigA and TeaR served as controls. Positive and negative controls as provided in the Matchmaker™ Gold Yeast Two-Hybrid System by Clontech Laboratories. Dilution series of respective strains were grown on selective dropout leucine and tryptophan medium (SD-LW) and selective dropout leucine, tryptophan and histidine (SD-LHW) at 30°C for 3 days. AD, activating domain; BD, binding domain. (C) Confocal scanning image of the localization of ApsA in distal parts of the hyphae (a). ApsA does not localize to hyphal tips (b). Hyphae of the strain SRM176 (alicA::eGFP::apsA) were grown as described (frame accumulation, 2; line average, 4; AOTF 488, 5%; gain, 900 V; offset, -0.1; scan speed, 400 Hz; emission bandwidth, 492 nm–50 ms; maximum projection of a 6.29 μm z-stack). Scale bar: 10 μm. (E) Boxplot of spindle motility analysis of wild-type (WT, SRM118), ΔmigA (SRM124) and ΔapsA (SRM136). The respective strains were grown as described, and time-lapse images were taken from mitotic spindles every 4 s (exposure time 450–490 nm, 50 ms). Distance of the spindle movement was measured every frame until the end of mitosis or loss of fluorescence. Measured distances were grouped into 20-s intervals and plotted. Because the normal distribution of the data is not given (as determined using a Kolmogoroff–Smirnoff and chi-squared test), a Mann–Whitney U test was applied. The boxplot was created with Boxplot 1.0.0 (8). Spindle motility was significantly altered in ΔapsA (P = 0.00496) and ΔapsA (P = 0.030) strains compared to the wild type at P = 0.01. However, emergence only differed significantly (P = 0.0073) between ΔmigA and ΔapsA strains at P = 0.01. [Wild type, n(data points) = 22, n(spindle) = 29, n(data points) = 15; ΔmigA, n(data points) = 20, n(spindle) = 15; ΔapsA, n(data points) = 29, n(spindle) = 190]. P ≤ 0.01; ** P ≤ 0.001. Nuclear distribution analysis of wild type (SRM118), ΔmigA (SRM124) and ΔapsA (SRM136). The respective strains were grown as described, and nuclei stained with DAPI (Vector Laboratories, Vectorashield Mounting Medium with DAPI, number H-1200), and the distance between neighboring nuclei was measured. Because the normal distribution of the data is not given (as determined using a Kolmogoroff–Smirnoff and chi-squared test), a Mann–Whitney U test was applied. The boxplot was created with Boxplot 1.0.0 (8). Nuclear distribution analysis of ΔapsA strains was significantly altered in ΔapsA strains compared to the wild type (P = 0.0001; ΔapsA: P = 0.0001). Nuclear distribution between the wild-type and ΔmigA strains did not differ significantly (P = 0.089) at P = 0.05. [Wild type, n(data points) = 32, n(nucleus) = 336; ΔmigA, n(data points) = 31, n(nucleus) = 337; ΔapsA, n(data points) = 30, n(nucleus) = 396]. In the boxplots, the line represents the median, the boxes represent all data points between the 75% and 25% quartile, and the whiskers represent the maximum and minimum values. *P ≤ 0.001, n.s., not significant, NT, N-terminal.

strains, where hyphae displayed meandering growth, similar to that of the migA teaA double-deletion strain (Fig. 2B). The observed phenotypes were not due to the tagging of MigA or TeaA with the split yellow fluorescent protein (YFP) halves (supplementary material Fig. S4B). As inferred from the interaction of MigA with TeaA, MT convergence in the hyphal tip was affected in ΔmigA as in ΔteaA strains (Fig. 6D, supplementary material Movie 6).

The interaction between MigA and MyOE provides an active guidance mechanism for MTs along actin filaments

A possible mechanism for MT convergence in the hyphal tip is active pulling of the MT plus ends along actin cables that originate from the cell-end marker complex. To test this hypothesis, we examined an interaction of MigA with the class-V myosin MyoV (MyoV), which localizes in vivo to the hyphal tip and associates with secretory vesicles (Taheri-Talesh et al., 2012; Zhang et al., 2011). BiFC analysis revealed a strong fluorescence signal at the hyphal tip and along some filamentous structures originating from the cortex (Fig. 7A). Strains overexpressing migA displayed a slightly curvyl phenotype and no difference in the phenotype at the colony level, whereas hyphae in myoe-overexpressing strains were considerably thicker and showed a growth defect on solid medium (supplementary material Fig. S4A,C). The corresponding BiFC strain also showed strong growth defects with smaller colonies and a defect in spore formation, and the diameter of hyphae gradually increased from the spore to the tip (supplementary material Fig. S4D,E). The phenotype of the BiFC strain also resembled a myoe-deletion phenotype, which suggests that MyoE is not functional, probably owing to the irreversible interaction of the two split YFP halves. Thus, in vivo, the interaction can only be transient. The interaction between MigA and MyOE was further confirmed in a yeast two-hybrid assay (Fig. 7B).

Colocalization studies with eGFP-tagged MigA and mCherry-tagged MyOE should show co-transport of both proteins. However, the MyOE concentration – even after expression under its native promoter – is too high to resolve such co-transport (Taheri-Talesh et al., 2012). In order to lower the concentration of the tagged MyOE protein, we generated a strain with mCherry-tagged MyOE, which has a modified stop codon (TGA/CTA) between the coding sequence of myoe and mCherry. This stop codon has been shown to frequently trigger translational readthrough (Freitag et al., 2012; Steiber et al., 2014). In this strain, only a small fraction of MyOE was labeled with mCherry and this allowed tracking of smaller clusters of MyOE at the tip. Using this construct, we observed partial colocalization of MigA and MyOE in the tip (Fig. 7C). Despite being almost below the detection limit, meaning that time resolution was challenging, we were able to detect co-transport of both proteins at the hyphal tip (supplementary material Movie 7). In the corresponding time-lapse series, signals of MyOE moved away from the tip and returned together with MigA comets (supplementary material Movie 7).

DISCUSSION

The interaction and attachment of MTs to chromosomal kinetochores, and the temporal interaction of MTs with defined cortical regions during polarized cellular extension are two prominent examples of the necessity of MT capture in eukaryotic cells (Carminati and Stearns, 1997; Fodde et al., 2001; Reilein et al., 2005; Lu et al., 2001). The mechanisms require the spatial and temporal interaction between MT-plus-end-associated proteins and target protein complexes, which transmit information to downstream processes. If only a small number of MT-plus-end-associated proteins (or only one) were required for different MT interactions, one would assume that the specificity also relies on different interacting proteins. Here, we found that the +TIP protein MigA is able to interact with two cortical proteins, ApsA and TeaA. The downstream processes are very different, however, for the two cases. The interaction with ApsA promotes spindle oscillations and is most likely to involve the activation of the dynein pathway as in S. cerevisiae, whereas dynein is not activated upon interaction with the cell-end marker protein TeaA. The two processes are spatially separated because ApsA does not reach the hyphal tip, whereas TeaA is restricted to the hyphal tip (Fig. 3D, supplementary material Fig. S4F).

The interaction of MigA with ApsA is conserved in relation to that in S. cerevisiae. However, nuclear division in yeast is correlated with nuclear migration and asymmetric movement of the dividing nucleus into the bud neck. This asymmetry is generated, in the first instance, by asymmetric loading of Kar9 onto the two SPBs. Such asymmetry is not required in vegetative hyphae of filamentous
fungi because interphase nuclei migrate within the hyphae (Suelmann et al., 1998). Nevertheless, the dynamic behavior of Kar9 appears to be conserved in MigA. When the MigA concentration increased at one SPB, it decreased at the other. This oscillation was repeated several times during mitosis. Such fluctuations of MigA came as a surprise because, in *S. cerevisiae*, asymmetric loading of Kar9 results from phosphorylation of a number of serine residues (Liakopoulos et al., 2003). However,
because these serine residues are not conserved in MigA, a different mechanism is likely to play a role. In any case, the fluctuations themselves reveal the potential for stable asymmetric loading of MigA onto the SPBs. This might be of importance during mitotic trajectories. MigA localizes to growing and retracting MT plus ends (arrowheads). Lines shown in the bottom image indicate trajectories of individual MigA clusters, and colors indicate different initial times of the trajectories. Hyphae of the strain SFRM40 (migA::mEosFPthermo, alcA(p)::eGFP::tubA) were grown as described (exposure time 200 ms). Scale bar: 2 µm. (E) MigA^NT (arrowheads) comets move towards the tip of the hyphae. Hyphae of SFRM198 (migA^NT::eGFP::tubA) were grown as described, and time-lapse images were taken (exposure times 450–490 nm, 800 ms). Scale bar: 2 µm. (F) MigA^Kd localizes to the cytoplasm and also accumulates in a subapical region (maximum projection of a 100-s time-lapse image). Hyphae of SFRM198 (migA^Kd::eGFP) were grown as described, and time-lapse images were taken (exposure times 450–490 nm, 800 ms). Scale bars: 2 µm; 25 s (y). False color heat map (bottom) shows fluorescence intensities as color scheme. NT, N-terminus.

Fig. 4. Localization of MigA at growing and retracting MT plus ends. (A) Kymograph of MigA::GFP comets traveling towards the tip. Retrgrade movement can also be observed (arrowhead). Hyphae of SFRM1 (migA::eGFP) were grown as described (exposure times 450–490 nm, 500 ms). Scale bars: 1 µm (x); 20 s (y). (B) MigA binds to MTOCs (●) at the nucleus and is transported to the MT plus ends (arrowhead). Hyphae of the strain SFRM22 (migA::eGFP, alcA(p)::mCherry::tubA) were grown as described (exposure time 450–490 nm, 500 ms; 538–662 nm, 500 ms). Scale bar: 2 µm. (C) Velocity of MigA::GFP comets in vivo. Calculated mean velocity ± s.d. is 11.91±9.49 µm/min [n(MigA signals)=219; time-lapse sequences lasting a total of 1272 s]. 63.47% of the measured velocities were between 5 and 15 µm/min. Hyphae of SFRM1 (migA::eGFP) were grown as described, and time-lapse images were taken (exposure times 450–490 nm, 500 ms). Velocities were measured using kymographs. Measured velocities were grouped and plotted. (D) Analyzed positions of mEosFPthermo-labeled MigA molecules from PALM single-particle-tracking analysis. Snapshots taken from an 18-s time-lapse image (total imaging time). Images show the maximum projection of 16 individual images acquired during each 3.3-s interval. Overlay shows the computed positions of all MigA::mEosFPthermo clusters detected in the time-lapse image. MigA localizes to growing and retracting MT plus ends (arrowheads). Lines shown in the bottom image indicate trajectories of individual MigA clusters, and colors indicate different initial times of the trajectories. Hyphae of the strain SFRM40 (migA::mEosFPthermo, alcA(p)::eGFP::tubA) were grown as described (exposure time 200 ms). Scale bar: 2 µm. (E) MigA^NT (arrowheads) comets move towards the tip of the hyphae. Hyphae of SFRM198 (migA^NT::eGFP::tubA) were grown as described, and time-lapse images were taken (exposure times 450–490 nm, 800 ms). Scale bar: 2 µm. (F) MigA^Kd localizes to the cytoplasm and also accumulates in a subapical region (maximum projection of a 100-s time-lapse image). Hyphae of SFRM198 (migA^Kd::eGFP) were grown as described, and time-lapse images were taken (exposure times 450–490 nm, 800 ms). Scale bars: 2 µm; 25 s (y). False color heat map (bottom) shows fluorescence intensities as color scheme. NT, N-terminus.
The APC–Eb1 interaction has been proposed to play a crucial role in chromosomal stability because it is necessary for the physical interaction between MT plus ends and chromosomal kinetochores during mitosis (Fodde et al., 2001).

Because MigA is more closely related to APC than Kar9 is to APC (Fig. 1B), it is possible that this potentially evolutionarily developed mechanism and the influence on cell-end markers is also conserved in human cells. Indeed, MigA and APC share several MT-associated functions. In the absence of the MT cytoskeleton,

(Su et al., 1995; for a review of Eb1 proteins, see Tirnauer and Bierer, 2000). The APC–Eb1 interaction has been proposed to play a crucial role in chromosomal stability because it is necessary for the physical interaction between MT plus ends and chromosomal kinetochores during mitosis (Fodde et al., 2001).
MigA localizes in cortical clusters. A similar localization is known for APC, which accumulates at the cortex, at the very periphery of actively extending membranes (Barth et al., 2002; Barth et al., 1997; Näthke et al., 1996). APC-deficient neuronal cells have a highly disturbed cytoskeleton (Chen et al., 2011), which, with a high number of non-converging MTs, is also true for disturbed cytoskeleton (Chen et al., 2011), which, with a high number of non-converging MTs, is also true for A. nidulans migA deletion strains. Furthermore, APC and MigA are transported to the MT plus end in an Ebi1-dependent manner, although they both bind to tubulin autonomously as well (Deka et al., 1998). It is also reported that APC partially localizes at the basal cortex and that passing MT plus ends pause at the APC puncta. Therefore, APC has been proposed as a template that guides MT network formation (Reilein et al., 2005). This behavior resembles the mechanism described here, where MigA interacts with the cell-end marker TeaA to ensure docking of MTs to the cell cortex. The interplay between the actin and the MT cytoskeletons is a key step in many cellular processes. Although many open questions remain, the comparative analysis of key components in different organisms helps to develop a general picture.

MATERIALS AND METHODS

Strains, plasmids and culture conditions

Supplemented minimal medium for A. nidulans was prepared as described previously, and standard strain construction procedures were used (Takeshita et al., 2008). A. nidulans strains used in this study are listed in supplementary material Table S1. The S. cerevisiae strains AH109 and Y187 (Clontech) were used for yeast two-hybrid interaction studies. S. cerevisiae cells were grown in yeast peptone dextrose adenine (YPDA) complete medium, or on minimal medium (synthetic dropout) supplemented with the dropout-mix needed for selection, as described in the Clontech Matchmaker™ GAL4 Two-Hybrid System 3 Manual (http://www.clontech.com). S. cerevisiae strains used in this study are listed in supplementary material Table S2. Standard laboratory Escherichia coli strains (Top 10F™) were used. Oligonucleotides are listed in supplementary material Table S3, and plasmids in supplementary material Table S4.

Molecular techniques

Standard DNA transformation procedures were used for A. nidulans, S. cerevisiae and E. coli. For PCR experiments, standard protocols were applied using a personal Cycler (Biometra, Göttingen, Germany) for the reaction cycles. DNA sequencing was performed by a commercial company (MWG Biotech, Ebersberg, Germany). DNA analyses and Southern
hybridizations were performed as described previously by Sambrook and Russel (1999).

Yeast two-hybrid analysis
Screening for an interaction of MigA with other proteins was performed according to the Matchmaker™ GAL4 Two-Hybrid System 3 Manual (Clontech). Plasmids harboring the migA open reading frame (ORF) were generated by using PCR amplification from genomic DNA (strain TN02A3), introducing SfiI and EcoRI restriction sites (primers, KarAFull_Y2HSfiI and KarAFull_Y2HEcoRI) for subsequent ligation into pGBKT7 (Clontech), and EcoRI and XhoI sites (primers, FullKarA_EcoRIF and FullKarA_XhoIR) for ligation into pGADT7-Rec (Clontech), yielding pRM32 and pRM36, respectively. The C-terminal region of migA was amplified by using PCR from cDNA (strain TN02A3).

Fig. 7. MigA interacts with the class-V myosin MyoE. (A) Left, confocal scanning image of BiFC of MigA and MyoE at the hyphal tip and along filamentous structures in distal parts of the hyphae. False color heat map (middle) shows fluorescence intensities as a color scheme. Hyphae of the strain SRM17 (alcA(p)::YFPC::migA, alcA(p)::YFPN::myoE) were grown as described (frame accumulation, 2; line average, 6; AOTF 514, 20%; gain, 900 V; offset, −0.2; scan speed, 1000 Hz; emission bandwidth, 522–658 nm; maximum projection of a 1.38-μm z-stack). Scale bar: 2 μm. (B) Yeast two-hybrid analysis of MigA and MyoE. Positive and negative controls as provided in the Matchmaker™ Gold Yeast Two-Hybrid System by Clontech Laboratories. Dilution series of the indicated strains were grown on selective dropout leucine and tryptophan (SD-LW) and selective dropout leucine, tryptophan and histidine (SD-LWH) at 30°C for 3 days. (C) Colocalization of MigA and MyoE at the hyphal tip. Hyphae of SRM192 (migA::eGFP, myoE::TGACTA::mCherry) strain were grown as described (exposure time 450–490 nm, 400 ms; 538–562 nm, 500 ms). Scale bar: 2 μm. AD, activating domain; BD, binding domain.

Fig. 8. Model of the MigA pathway. (A) During mitosis, MigA localizes dynamically to both spindle poles and along the mitotic spindle. From spindle pole bodies, MigA is loaded onto astral MTs and transported towards the MT plus ends. At the plasma membrane, MigA facilitates the interaction between astral MTs and ApsA. This mechanism is predominantly important during early stages of mitosis. (B) During interphase, MTs are growing towards the hyphal apex. MigA is able to bind to TubA independently, is transported to the MT plus end in an EbA-dependent manner and reaches the hyphal tip. In the tip region, MigA interacts with MyoE, which drags MigA, and thus the bound MT, along the actin filaments towards the cell-end marker complex. Once at the cortex, MigA interacts with the cell-end marker TeaA and thus anchors the MT for a short time to the polarization site. The model was created with ChemBioDraw Ultra (PerkinElmer, Cambridge).
and subsequently ligated into pGADT7-Rec using Ndel and EcoRI restriction sites (primers, KarACT_Y2HNdEl and KarAFlul_Y2HeCoRI) resulting in pRM27. pGBK T7 and pGADT7-Rec with the N-terminal part of apaS were generated by using PCR amplification (primers, ApsA_Y2HN_Ndel and ApsA_Y2HN_BamHI) from cDNA (strain TN02A3) and subsequent ligation into the respective vectors through Ndel and BamHI sites. The same approach was applied for tubA (primers, TubA_Y2H_Ndel_fw and TubA_Y2H_BamHI_r), eβA (primers, EBA_Y2H_Ndel_f and EBA_Y2H_EcoR_r) and myoE (primers, MyoV_Ndel and MyoV_EcoRI).

In order to generate a plasmid with the mutated SxIP motif (MigA_C873–876), pRM27 was mutagenized. In a PCR with Pfu polymerase and 5′-phosphorylated oligonucleotides flanking the coding region (primers, MigACT_Eb1Mut_fw and MigACT_Eb1Mut_rv), a linear fragment was amplified. The complete reaction was digested with DpnI to cut all methylated original vector molecules, and then ligated. The final plasmid (pRM104) was partially sequenced to confirm the deletion.

Strains AH109 and Y187 were transformed using the lithium chloride method, and transformants were selected on selective synthetic dropout medium as described in the Matchmaker™ GAL4 Two-Hybrid System 3 manual. Expression of all constructs was verified by western blotting (except for AD MigA_C873–876), and appropriate tests for self-activation were performed (supplementary material Fig. S3C).

Tagging with eGFP and gene deletion

MigA was tagged at the C-terminal end with eGFP. The 1-kb C-terminal region of migA was PCR amplified with genomic DNA (strain SO451) with the primer pair KarA_P4 and KarA_P6, and the 1-kb terminator region of the gene with primer pair KarA_P5 and KarA_P8. A fragment of the eGFP::pyrG cassette was amplified from pFN03 with primer pair GA_linker and pyrG_cas_rev. The three fragments were fused together in a subsequent fusion PCR (Nayak et al., 2006) with primer pair KarA_P4 and KarA_P7. In order to introduce a C-terminal mEosFP thermo tag, we amplified the mEosFPthermo construct with primer pair Linker_mlRIS_fwd and IRIS_Leader_rev, the pyrG fragment from pFN03 with primer pair pyrG_cas_for and pyrG_cas_rev and fused together in a fusion PCR with primer pair GA_linker and pyrG_cas_rev. The mEosFPthermo:pyrG fragment was also fused to the C-terminal and right border of migA, as described previously. The resulting migA:mesoEosFPthermo:pyrG cassette was subcloned into cloning vector pJet1.2 (Fermentas), resulting in pRM35. In order to generate a construct of MigA with a mutated SxIP motif (MigA_C873–876), pRM35 was mutagenized in the same way as pRM104 was generated, resulting in pRM105.

The migA::eGFP:pyrG construct was generated by amplifying the promoter region with KarA_P3 and MigA_P12, the 9-kb domain with primer pair MigA_P11 and MigA_P10. In a subsequent fusion PCR with primer pair KarA_P2 and KarA_P7, the obtained fragments were fused together with the previously described eGFP::pyrG cassette and right border. Similarly, the migA::LARK::eGFP:pyrG was generated by amplifying the promoter and N-terminal region of migA with primer pair KarA_P3 and MigA_P9. In the subsequent fusion PCR with primer pair KarA_P2 and KarA_P7, the fragment was fused together with the eGFP::pyrG cassette and right border.

In order to tag MyoE at the C-terminus with mCherry and to insert a modified stop codon between the coding sequence of myoE and mCherry, again fusion PCR was used. The 1-kb C-terminal region of myoE was PCR amplified with genomic DNA (strain SO451) with the primer pair MyoV_P1 and MyoV_P2_TGACTA, and the 1-kb terminator region of the gene with primer pair MyoV_P3 and MyoV_RB_rev. A fragment of the mCherry::pyrG cassette was also amplified using primer pair GA_linker and pyrG_cas_rev. The three fragments were fused together in a subsequent fusion PCR (Nayak et al., 2006) with primer pair MyoV_nested_for and MyoV_nested_rev. The resulting myoE::TGACTA::mCherry::pyrG cassette was subcloned into pJet1.2 (Fermentas). Insertion of the modified stop codon was confirmed by sequencing (MWG Biotech, Ebersberg, Germany).

PCR products were transformed into uridine- and uracil-auxotrophic A. nidulans ΔnkuA strain SO451, in order to increase the homology of integration.

For tagging of MigA at the N-terminus, the 1-kb N-terminal region of the gene was amplified from genomic DNA (strain TN02A3) with primer pair KarA_750bp_F and KarA_750bp_R, digested with AscI and PacI, and ligated into pCMB17apx, yielding pRM6. The same approach was applied for ApsA (primers, ApsA_1kb_AscI and ApsA_1kb_PacI) and MyoE (primers, AN8862_for_AscI and AN8862_rev_PacI), and then ligated into pDV7, pSH44, pMBC17apx and pJR1, respectively. The plasmids were transformed into the ΔnkuA strain TN02A3.

To delete migA, the 1-kb promoter region of the gene was amplified with primers KarA_P1 and KarA_P3. A fragment of the pyrG marker cassette was amplified with primers pyrG_cas_for and pyrG_cas_rev. PCR products of the promoter region, pyrG₃₃ and the terminator region amplified using KarA_P5 and KarA_P8 were fused together using fusion PCR with primer pair KarA_P2 and KarA_P7. The PCR products were transformed into the ΔnkuA strain SO451. Knockout cassettes were also obtained from the Fungal Genetic Stock Center (FGSC, http://www.fgsc.net/Aspergillus/KO_Cassettes.htm). Amplification of the FGSC migA deletion cassette using PCR was performed with primer pair FGSC_Kara_LB_for and FGSC_Kara_RB_re, the teaA deletion cassette with primer pair TeaA_nested_for and TeaA_nested_rev, and the myoE-deletion cassette with primer pair FGSC_dMyoVنس fw and FGSC_dMvroVن_r. The deletion cassettes were transformed into ΔnkuA strains SO451 and TN02A3. The primary transformants were screened with a microscope and PCR to check for correct integration of the eGFP tagging or deletion cassette. Integration events were confirmed by Southern blotting.

Light and fluorescence microscopy

Live-cell imaging of germlings and young hyphae

Up to 4×10⁶ spores were grown on 170±5 µm high-precision microscope cover glasses (Roth, Karlsruhe, Germany) in 0.5 ml minimal medium+2% glycerol and appropriate selection markers. Cells were incubated for 12 to 14 h at 28°C following 2 h at room temperature. Alternatively, for in vivo time-lapse microscopy, cells were incubated in 35-mm Fluorodish (Ibidi, Thermo Fisher Scientific, Martinsried, Germany).

Conventional fluorescence images were captured at room temperature using a Zeiss Plan-Apochromat 63×1.4NA oil DIC and Zeiss EC Plan-NeoFluar 100×1.3NA oil objective attached to a Zeiss Axiopholator Z.1 combined with an AxioCamMR. Images were collected and analyzed using AxioVision v4.8.1, Zen 2012 Blue Edition v1.20 (Zeiss, Jena, Germany) and ImageJ 1.48p (National Institutes of Health, MD). Image specifications are indicated in the respective legends.

Confocal images were captured at 21°C using a Leica HCX PL APO 63×1.2W Corr objective attached to a Leica TCS SP5 (DM5000) and conventional photomultiplier tube detectors (Leica, Wetzlar, Germany). If not otherwise stated, the pinhole size was set to 1.2 A.U. and 458/514 nm or 488/561/633 nm notch filter was used. Images were collected and analyzed using LAS AF v2.6 (Leica, Wetzlar, Germany) and ImageJ 1.48p. Acquisition specifications are indicated in the respective figure legends.

PALM imaging was performed as previously described (N. Takeshita, Karlsruhe, personal communication). Briefly, images were acquired at room temperature on a modified inverted microscope (Axiovert 200, Zeiss) equipped with a high-NA water immersion objective (C-Apochromat, 63×, 1.2NA Zeiss). We employed three solid-state lasers, with wavelengths 561 nm (Cobolt Jive, Cobolt, Solna, Sweden), 473 nm (LSR473-200-T00, Laserlight, Berlin, Germany) and 405 nm (LSR405-500-T00, Blue Sky Research, Milpitas, CA) for excitation and photoactivation of the fluorophores. The laser sources were combined through dichroic mirrors (AHF, Tübingen, Germany) and guided through an acousto-optic tunable filter (AOTFOnC-400-650, A-A, Opto-Electronic, Orsay Cedex, France). Cells were incubated for 2 h at 28°C followed by 12 to 14 h at room temperature in a chambered cover glass. The photoconvertible fluorescent proteins were converted from their green- to their red-emitting forms using high intensity 405-nm light for 10 s to preconvert sufficient fluorescent protein molecules, followed by simultaneous illumination with low intensity.
(0-50 W/cm²) 405-nm and 561-nm excitation illumination (20-40 W/cm²). After passing through the excitation dichroic (z 405/473/561/635, AHF, Tübingen, Germany), fluorescence emission was filtered by a 607/50 bandpass filter (AHF, Tübingen, Germany) and recorded with a back-illuminated EMCCD camera (Ixon Ultra 897, Andor, Belfast, Northern Ireland). Recorded images with MigA clusters were localized in each image frame and single-particle-tracking analysis was applied using our custom written PALM analysis software, a-livePALM (Li et al., 2013). For single-particle analysis, maximum displacement of 300 nm, memory of two frames (allowed frames to skip) and the minimum trajectory length of five frames were used.

Acknowledgements
We thank Bo Liu (Department of Plant Biology, University of California, Davis, CA) for kindly providing the A. nidulans JeaA strain and Michel O. Steinmetz (Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland) for advice on Eb1 binding motifs.

Competing interests
The authors declare no competing or financial interests.

Author contributions
R.M. performed almost all experiments and was supported by S.H. PALM experiments were done in collaboration with Y.I., G.U.N. and T.N.R.F. and R.M. designed the experiments. All authors contributed to the writing of the manuscript, but most work was done by R.M. and R.F.

Funding
The work was supported by the Deutsche Forschungsgemeinschaft (DFG) (grant numbers Fi459/13-1, TA819/2-1, FOR1334, to the Centre for Functional Nanostructures); the Baden-Wuerttemberg Stiftung; and Karlsruhe Institute of Technology (KIT) in the context of the Helmholtz STN program. R.M. was a fellow of the ‘Landesgraduiertenprogramm’ of the state of Baden-Württemberg.

Supplementary material
Supplementary material available online at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.169094/-/DC1

References

